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 

Abstract—NarrowBand Internet of Things (NB-IoT) is 

considered as a promising wireless communications technology 

for Internet of Things (IoT) especially for the outdoor 

environment. Many outdoor IoT applications involve large 

numbers of homogeneous NB-IoT devices. It is tedious to specify 

and accommodate these devices during application development. 

To resolve this issue, this paper proposes a service platform for 

fast development of NB-IoT applications called NB-IoTtalk. This 

platform utilizes a tag mechanism to provide an 

easy-to-manipulate graphical user interface (GUI) to 

accommodate a large number of NB-IoT devices in an application 

and transparently show them in a visual map. Our approach 

automatically creates and parses the device profile used to 

interpret the payload of an NB-IoT message. We then use a smart 

parking lot application as an example to investigate the 

event-triggered reporting of NB-IoT in terms of the time-to-live 

report frequency and the outage detection accuracy. Our study 

provides the guidelines to set the time-to-live interval for 

event-triggered NB-IoT applications. 

 
Index Terms—event-triggered, Low Power Wide Area Network 

(LPWAN), NarrowBand Internet of Things (NB-IoT), parking 

sensor, time-to-live. 

 

I. INTRODUCTION 

NTERNET of Things (IoT) is one of the mainstreams in 

information and communications technology [1]-[3]. Over 

the past 20 years, outdoor IoT wireless applications have been 

developed based on the cellular telecommunications 

technologies. These applications were deployed in either 

GPRS/LTE based broadband services [4] or WLAN based 

services [5]. Recently, Low Power Wide Area Network 

(LPWAN) technologies have been developed for IoT 

applications with low data rate transmission, e.g., LoRA [6], 

EC-GSM-IoT [7] and NarrowBand Internet of Things (NB-IoT) 

[8], [9]. To promote smart campus, National Chiao Tung 

University (NCTU) is deploying several IoT-based smart 

campus applications including temperature and PM2.5 

monitoring, parking, emergency button, and dog tracking based 
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on an IoT application management platform called IoTtalk 

[10]-[13]. These applications utilize the NB-IoT devices. 

Before elaborating on NB-IoT, we first introduce several 

LPWAN technologies for IoT. 

LoRaWAN is a LPWAN specification intended for battery 

operated wireless IoT devices, which provides seamless 

interoperability among IoT devices without the need of 

complex local installations and gives back the freedom to the 

users, the developers, and the businesses enabling the roll out of 

IoTs. In our LoRA deployment at NCTU, the transmission 

performance is not very good because LoRA is operated in the 

unlicensed bands. The details can be found in [14]. 

As an extension technology of GSM, EC-GSM-IoT’s 

uplink/downlink transmission rate ranges from 70 Kbps to 350 

Kbps with Gaussian filtered Minimum Shift Keying (GMSK) 

modulation, and up to 240kbps with 8-Phase-shift keying 

(8-PSK) modulation. Every GSM base station can 

accommodate 50,000 EC-GSM-IoT devices, where the standby 

power of a device is 5Wh. for at least 10 years. Compared with 

GPRS [4], the radio coverage of EC-GSM-IoT at 33dBm has 

been increased by 20dB.  

While compatible with FDD and TDD LTE [15], 3GPP 

eMTC has removed some broadband transmission features not 

needed in IoT to support 100,000 devices. At 3GPP Release 12 

[16], eMTC is exercised at a high transmission rate up to 

1Mbps using 1.08MHz bandwidth, which has 12dB radio 

coverage increase as compared with GPRS. eMTC also 

supports Voice Over LTE (VoLTE) [15], which is not found in 

other IoT technologies. The standby power of an eMTC device 

is 5Wh for at least 10 years.  

 

 
NB-IoT is exercised with 180 kHz bandwidth under the LTE 
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Fig. 1.  The NB-IoT Network Architecture. 
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infrastructure. Fig. 1 illustrates the NB-IoT network 

architecture. An NB-IoT device (Fig. 1 (1)) consists of the 

sensors/actuators and the NB-IoT wireless module that 

communicates with an LTE base station (Fig. 1 (2)), where the 

unlink/downlink transmission rate is 250Kbps. The LTE base 

station connects to the LTE core network (Fig. 1 (3)) through 

the S1-MME/S1-U interface. The core network connects to the 

NB-IoT Application Server (AS; Fig. 1 (4)) through the T8/SGi 

interface.  

The standby power of an NB-IoT device is 5Wh for at least 

10 years. The NB-IoT radio coverage is the same as 

EC-GSM-IoT (up to 20 Km in diameter), which supports 

200,000 devices per base station. Furthermore, NB-IoT is 

extended with multiple 180 kHz carriers to accommodate up to 

millions of devices. To achieve better radio penetration, it is 

recommended to operate NB-IoT at sub-1G spectrums (such as 

700MHz, 800MHz or 900MHz). 

NB-IoT aims to establish a LPWAN through the existing 

LTE infrastructure. There are three alternatives for NB-IoT 

deployment. In the Standalone mode, independent bandwidth is 

allocated so that NB-IoT will not interfere with the LTE 

operation. The Guard Band mode utilizes the LTE guard band, 

which allows the operator to support NB-IoT without requiring 

new spectrum and with minimal impact to LTE. The In-Band 

mode directly occupies a LTE bandwidth to co-exist with the 

LTE operation. In 2017, Chunghwa Telecom (the largest 

telecom company in Taiwan) deployed Taiwan’s first NB-IoT 

service with the In-Band mode in NCTU. 

Based on the above description, NB-IoT has better 

penetration than GSM, which gives good qualities for both 

indoor and outdoor transmissions. To develop an NB-IoT 

service, the developer needs to create a “network application” 

(Fig. 1 (5); typically an application server in the Internet) that 

connects to the NB-IoT Server. This network application 

interacts with NB-IoT devices to provide a specific IoT service. 

Development of an NB-IoT network application is a tedious 

task, where a device profile is used to define how a network 

application (Fig. 1 (5)) communicates with the corresponding 

NB-IoT devices (Fig. 1 (1)). Specifically, the profile is used by 

the network application to interpret the payload of a message 

sent from the NB-IoT device. We will elaborate more on the 

device profile later.  

This paper shows how to develop fast NB-IoT network 

applications through an application-level platform called 

NB-IoTtalk. This platform integrates IoTtalk [10]-[13] with a 

tag mechanism, which allows a developer to easily create IoT 

applications (e.g., smart parking lot) with a large number of 

NB-IoT devices through a web page. Such tool has not been 

found in the literature. From the viewpoint of an NB-IoT 

system, NB-IoTtalk is a network application, and therefore, can 

be accommodated by LTE operators worldwide. This paper is 

organized as follows. Section 2 describes the NB-IoTtalk 

network architecture, and shows how to automatically create 

the network applications from an existing device profile. 

Section 3 proposes the tag mechanism and automatic creation 

of the device profile. Section 4 uses NCTU parking lot as an 

NB-IoT application and shows its performance in terms of the 

time-to-live report frequency and the outage detection 

accuracy.  

II. THE NB-IOTTALK ARCHITECTURE AND AUTOMATIC 

NETWORK APPLICATION CREATION 

The philosophy of IoTtalk is centered at two concepts called 

“device feature” (DF) and “device model” (DM). An input DF 

is a sensor (such as a temperature sensor) or a controller unit 

(such as a button). An output DF is an actuator (such as a lamp). 

A DM is a collection of DFs. In IoTtalk, every IoT device can 

be partitioned into an input and an output devices. The input 

device is a subset of the IoT device, which consists of the input 

DFs of that device. Similarly, the output device consists of the 

output DFs of that device. In [12], we show how to 

automatically create Arduino-based applications by 

considering an Arduino board as an IoTtalk device. In this 

paper, we further extend this capability to transparently map a 

group of homogeneous NB-IoT devices to an IoTtalk device 

called “NB-IoTtalk” device. This device (Fig. 2 (1)) consists of 

two major components: the NB-IoT Application (Fig. 2 (4)) is 

responsible for communication with the NB-IoT Server (Fig. 2 

(2); see also Fig. 1 (4)) and a Device Application (DA; Fig. 2 

(5)) is responsible for interaction with the IoTtalk Server (Fig. 2 

(3)) through HTTP. Multiple DAs can be connected to the 

NB-IoT Application to support various services such as parking, 

dog tracking and smart home applications (Fig. 2 shows three 

IoTtalk DAs).  

 

 
The IoTtalk Server consists of two components: the engine 

and multiple GUIs tailored for various application systems 

(such as NB-IoTtalk and ArduTalk). The IoTtalk engine (Fig. 2 

(6)) provides MQTT or HTTP based RESTful application 

programming interfaces for the IoTtalk DA to deliver/retrieve 

the IDF/ODF information to be saved in a database DB (Fig. 2 

(7)). The NB-IoTtalk GUI (Fig. 2 (8)) provides a friendly 

web-based user interface to quickly establish connections and 
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Fig. 2.  NB-IoTtalk: Integrating NB-IoT and IoTtalk. 
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meaningful interactions among the NB-IoT devices. Through 

the GUI, a user instructs the IoTtalk engine to execute desired 

tasks to create or set up device features, functions, and 

connection configurations. From the viewpoint of the NB-IoT 

system, the NB-IoTtalk device is a network application (Fig. 1 

(4)). From the viewpoint of IoTtalk, the NB-IoTtalk device is 

an IoTtalk device. We have built other IoTtalk-based 

application systems using IoTtalk DAs. For example, by 

installing the IoTtalk IDE (Integrated Development 

Environment) into an Arduino board, we build an ArduTalk 

device (Fig. 2 (9)) [13] connected to the IoTtalk engine, which 

can be accessed and manipulated by the ArduTalk GUI (Fig. 2 

(10)). In the GUI window, an input device is represented by an 

icon placed at the left of the window (Fig. 3 (a), (c), (e)), which 

consists of smaller icons that represent IDFs (Fig. 3 (1), (2), (5), 

and (7)). Similarly, an output device is represented by an icon 

placed at the right-hand side of the window (Fig. 3 (b), (d)), 

which includes ODF icons (Fig. 3 (3), (4), (6), and (8)). Note 

that the ParkingStatus device has one IDF and two ODFs, and 

therefore is represented by two icons (Fig. 3 (b) and (c)). By 

connecting the IDFs to the ODFs through the line segments 

(e.g., Joins 1-4), the devices interact with each other without the 

need of any programing effort. Details of the devices in this 

example will be elaborated in Section 4. 

  

 
The network application of an NB-IoTtalk device (Fig. 2 (1)) 

can be automatically created by a device profile, and is 

illustrated as input and/or output device icons in the NB-IoTtalk 

GUI. This profile is typically a JSON file specified by the 

NB-IoT operator or the NB-IoT device manufacturer. Our 

approach saves this profile in the DB1 database (Fig. 2 (11)). 

For the device profile given by a third-party NB-IoT device 

manufacture, the NB-IoT application interacts with the IoTtalk 

engine to automatically create the device icon shown in the 

NB-IoTtalk GUI. This profile is preloaded into the database 

DB1 (Fig. 2 (10)), which is retrieved and parsed by the Web 

Server (Fig. 2 (12)) to encode/decode the DFs and their values 

in the payload of every NB-IoT message. For example, the 

profile for the ParkingLot device is listed below.  

 

 
In the above JSON code, the device ID, i.e., International 

Mobile Equipment Identity (IMEI) is given at Line 1. The 

International Mobile Subscriber Identity (IMSI) number of the 

SIM card inserted in this device is given at Line 2. Note that 

different NB-IoT operators or device manufacturers may 

provide different formats for the profile. For example, in the 

profile provided by Chunghwa Telecom, the IMEI field is 

named DEVID and the IMSI field is named SIMID. When the 

Web Server parses Line 3, it creates the “ParkingLot” device 

icon (Fig. 3 (a)). Lines 4-8 describe the DFs in the ParkingLot 

DM. When Lines 5 and 6 are parsed, the Location IDF icon is 

created (Fig. 3 (1)). Location data are typically produced by a 

GPS receiver or can be input through a web page (to be 

elaborated in Fig. 5 (4)). When Lines 7 and 8 are parsed, the 

ParkSensor IDF icon is created (Fig. 3 (2)). This sensor gives 

on/off status to indicate if a parking space is occupied. 

After the device profile has been parsed, the user can access 

the details of the devices through the NB-IoTtalk web page 

illustrated in Fig. 5. This web page shows all NB-IoT devices 

(Fig. 5 (1)) of a specific device model (Fig. 5 (2)). The user can 

select the devices in a group, e.g., “NCTU-P2” (Fig. 5 (3)) to 

indicate the parking sensors installed in NCTU’s parking lot 2. 

In Fig. 5, the first and the third devices are selected. 

 

 
Due to cost consideration, most commercial parking sensors 

are not equipped with the GPS receivers. In this case, the 

NB-IoTtalk web page allows manually specifying the location 

of the parking lot (Fig. 5 (4)). 

 
Fig. 3. An example of NB-IoT applications configured in the NB-IoTtalk GUI. 

  

Line 1.  “IMEI”: “3588780065690”,   

Line 2.  “IMSI”: “460100000001234”,  

Line 3.  “DM”: ParkingLot  

Line 4.  “DFs”: [{  

Line 5.    “DF”: Location  

Line 6.    “VALUE”: //[float, float] 

},{ 

Line 7.    “DF”: ParkSensor  

Line 8.    “VALUE”: // boolean 

}]  
 

Fig. 4.  The device profile for ParkSensor. 

  

 
Fig. 5.  The NB-IoTtalk web page. 
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Fig. 6 illustrates the functional blocks of the NB-IoTtalk 

Device in Fig. 2 (1). To connect the network application to the 

NB-IoT Server (Fig. 6 (f)), the following steps are executed. 

Steps 1-3: The User Event Handler of the Web Server (Fig. 6 

(d)) initializes the MsgHandler (Fig. 6 (c)) to retrieve the 

MQTT host address of the NB-IoT Server and the related 

information from DB1 (Fig. 6 (e)).  

Steps 4 and 5: The MsgHandler (Fig. 6 (c)) then invokes 

connect() to establish an MQTT connection with the NB-IoT 

Server.  

Steps 6-9: The MsgHandler subscribes the MQTT topics 

(i.e., Send/IoTtalk/pub in our example) through subscribe(), 

and then invokes query_device() to retrieve the IMEIs and the 

DFs of all NB-IoT devices connected to the NB-IoT Server.  

Steps 10 and 11: The NB-IoT Server returns the queried 

information back to the User Event Handler through 

on_message(). The information is saved in DB1. At this point, 

the NB-IoT Application is established, but no DA (Fig. 6 (b)) 

has been created yet. 

After the user has set up an NB-IoT device group, e.g., 

NCTU-P2, and clicks the “Save” button in Fig. 5 (5), Steps 

12-16 are executed to create the NCTU-P2 DA. Specifically, 

the User Event Handler catches the “save” event from the 

browser, and invokes reigster() to create the DA for NCTU-P2, 

and then registers it to the IoTtalk Server (Fig. 6 (a)) with 

SERVER_IP. 

When an NB-IoT device in NCTU-P2 sends the data to the 

network, Steps 10, 17, and 18 are executed: the NB-IoT Server 

forwards the data to the IoTtalk Server through on_message() 

in the NB-IoT Application and push() in the NCTU-P2 DA. 

When the IoTtalk Server sends the data to an NB-IoT device 

in NCTU-P2, Steps 19-21 are executed: the IoTtalk Server 

sends the data to the NB-IoT Server by invoking pull() in the 

DA and publish() in the NB-IoT Application. 

When the user clicks the “Delete” button of NCTU-P2 in Fig. 

5 (6), Steps 22-24 are executed: The User Event Handler 

catches the “delete” event from the browser, and invokes 

deregister() to delete the DA for NCTU-P2 after deregistering 

it from the IoTtalk Server. 

When the user terminates the NB-IoT service, the User Event 

Handler disconnects the MQTT connection with Steps 22-26: 

the User Event Handler first invokes deregister() to deregister 

and delete all DAs (Steps 22-24), and then calls disconnect() 

to end the connection to the NB-IoT Server  (Steps 25 and 26). 

III. AUTOMATIC CREATION OF DEVICE PROFILE 

Both the NB-IoT device and the network application should 

follow the same device profile for a specific NB-IoT device. 

NB-IoTtalk automatically creates the profile by interaction 

between the Web Server (Fig. 2 (12)) and the IoTtalk engine 

(Fig. 2 (6)). The created profile is used as the IDE to be 

installed in the NB-IoT devices as what we did for Arduino [12]. 

The IoTtalk engine allows creation of the DFs and accumulates 

them in the database DB (Fig. 2 (7)). These DFs can be reused 

by various applications. NB-IoTtalk automatically translates 

these DFs into JSON format of the device profile. Many 

important pieces of the DF information may not be specified in 

the device profile, for example, the range [Min, Max] and the 

unit of the values (e.g., °C or °F for temperature). In 

NB-IoTtalk, such information is stored in DB1 and will be 

handled by the NB-IoT application. To our knowledge, 

transparent DF creation and reuse through the GUI has not been 

found in the literature. To accommodate a large number of 

homogeneous NB-IoT devices, we propose the “tag” 

mechanism. In NB-IoTtalk, every DF may include two types of 

parameters.  

 The attribute parameters describe the values of a DF. For 

example, a PM2.5 sensor is mapped to the PM2.5 DF that has 

one attribute parameter to produce the particulate matter 2.5 

measure in μ g/m3. A GPS receiver is mapped to the 

Location DF that has two attribute parameters to specify the 

latitude and the longitude. 

 The tag parameters (or tags in short) provide extra 

information associated with the DF. There are five types of 

tags: Identity (ID), Geographic Data (GeoData), Time (T), 

Battery (B), and Privacy (P).  

The early IoTtalk version [11], [12] only defined the attribute 

parameters for a DF. In NB-IoTtalk, the tags are defined to 

conveniently manipulate the DFs. A tag itself is an attribute 

parameter in the early IoTtalk version. For example, the 

GeoData tag is derived from the Location DF (for a GPS sensor 

or an iBeacon sensor) with two attribute parameters (i.e., the 

latitude and the longitude), which provides geographic location 

information of the DF. This tag is used to associate the DF with 

a visual map.  

The Time (T) tag specifies the time when a value of the DF is 

generated. The Battery (B) tag indicates the battery life of that 

DF, which is used for energy management of the DF (more 

precisely, the device of that DF). The Privacy (P) tag gives the 

privacy level of the DF, which is used when the privacy 

regulation is enforced in the IoT applications.  

In this paper, the most important tag is “Identity” (ID) used 

to support applications with a large number of homogeneous 

NB-IoT devices. The ID tag is derived from the Identity DF 

with one attribute parameter. In this paper, the ID tag specifies 
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the IMEI of an NB-IoT device. When NB-IoTtalk receives a 

message sent from an NB-IoT device, it associates the IMEI of 

that device to the corresponding DF(s). In the previous version 

of IoTtalk, most applications typically involve heterogeneous 

indoor IoT devices. For these devices, the DFs only need to be 

specified through their attribute parameters. For example, an 

indoor PM2.5 measurement application uses a PM2.5 IDF 

without the ID tag. On the other hand, for long-range wireless 

technologies such as NB-IoT, LoRA or Sigfox, many 

applications involve homogeneous outdoor IoT devices. In 

these applications, the DFs of the homogeneous devices are 

distinguished by their identities. With the ID tag, the 

NB-IoTtalk GUI can easily specify and accommodate any 

number (e.g., thousands) of homogeneous devices in an 

application and allows the number to dynamically change (i.e., 

you do not need to specify the number of the NB-IoT devices 

and can add or remove them). For the outdoor PM2.5 

measurement application with thousands of NB-IoT-based 

PM2.5 sensor devices, these devices are represented by one 

PM2.5 DF associated with the ID tag in NB-IoTtalk, where the 

IDs distinguishes multiple homogeneous NB-IoT devices 

grouped in this application. 

The IoTtalk engine provides the Device Feature Window to 

create and manage the DFs. In this web-based window, the user 

can edit a new or an existing DF by manipulating their attribute 

parameters. In Fig. 7, the GUI first displays two radio buttons 

for IDF/ODF selection (initially, IDF is selected; see Fig. 7 (a)) 

and the “DF Name” list shows all DFs for the selected 

IDF/ODF type (Fig. 7 (c)). The first item of the list is “add new 

DF”, which can be clicked to create a new DF (to be elaborated). 

If the user presses the ODF radio button (Fig. 7 (b)), all IDFs in 

the “DF Name” list are replaced by all ODFs stored in the DB. 

 
To create a new DF, the user selects the “add new DF” in the 

“DF Name” list, and the GUI pops up the Attribute Parameter 

module (Fig. 7 (d)). The rows of the module are created based 

on the number of the attribute parameters (Fig. 7 (e)). The 

default number is one. For each of the parameters, the Attribute 

Parameter module includes  

 the Type (i.e., the data types such as float, string and so on; 

see Fig. 7 (f)),  

 the Min (minimal) and Max (maximal) values (Fig. 7 (g)), 

and  

 the Unit (e.g., cm, m/s2 and so on; see Fig. 7 (h)). 

For an IDF, the Min/Max values can be automatically 

assigned through a dynamic ranging mechanism [11] and the 

user does not need to fill these fields. For an ODF, if the 

Min/Max fields are not filled, the ODF-parameters take 

arbitrary values without range limits. The user edits them 

according to the characteristics of the ODF provided in the 

manufacture’s data sheet. For example, the status value of the 

ParkSensor DF has the integer range [0, 1]. When the “Save” 

button is clicked (Fig. 7 (i)), the GUI pops a dialog box for 

inputting the name of the new DF (Fig. 7 (j)). Then the IoTtalk 

engine stores the DF information into the DB (Fig. 2 (7)). For 

example, in the Device Feature Window, if we select IDF (Fig. 

7 (a)), one parameter (Fig. 7 (e)), the integer type (Fig. 7 (f)), 

the min-max range [0, 1] (Fig. 7 (g)) and NULL unit (Fig. 7 (h)), 

and give the DF name “ParkSensor” (Fig. 7 (j)), then Lines 7 

and 8 in Fig. 4 is automatically generated. At the same time, the 

min-max range and the unit for ParkSensor are saved in DB1. 

The DFs created by the IoTtalk engine are used to build the 

DMs. In the NB-IoTtalk GUI, every DM is represented by a 

device icon that illustrates the DFs of the DM (see Fig. 3 

(a)-(e)). If a DF of the DM has a tag parameter, then the first 

letter of that tag is illustrated in the DF icon. For example, the 

EmptyNum and the DogID DFs are labelled by “G” to indicate 

that they are associated with GeoData (Fig. 3 (5), (6), (7) and 

(8)). Similarly, the ParkSensor DFs associated with ID are 

labeled “I” (Fig. 3 (1), (2), (3) and (4)). If a DF does not have 

any tag, then no initialized letter is illustrated in the DF icon. 

If no DF is associated with ID in the DM, then the user can 

only connect one device of this DM to NB-IoTtalk by mapping 

the device to the device icon in the NB-IoTtalk GUI. On the 

other hand, if any DF of the DM is associated with the ID tag, a 

group of NB-IoT devices are mapped to that device icon. In this 

way, we can quickly and conveniently build the applications for 

NB-IoT devices and replace the devices by others with different 

tags.  

 

 
The DMs are manipulated in the Model Management 

Window. The user can select a DM through the “DM Name” 

pull-down menu (Fig. 8 (a)) in the Device Model Window. The 

first item in the list is “add new DM” (Fig. 8 (c)) that can be 

clicked to create a new model. The Device Feature Window 

(Fig. 8 (b)) is also shown besides the Device Model Window 

for the user’s benefit: the user may need to know the details of a 

specific device feature when he/she is configuring a DM. 

Whether a DF has any tag or not depends on the DM that 

includes this DF. The Device Model Window allows the user to 

manipulate the DM with the Tag Parameter list (Fig. 9 (e); to be 

 
Fig. 7.  Device Feature Window. 

  

 
Fig. 8.  Device Model Window. 
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elaborated later). To create a new DM, the user selects the “add 

new DM” in the “DM Name” pull-down menu, and the GUI 

pops up both the DF module (Fig. 9 (a)) and the “Add/Delete 

DF” module (Fig. 9 (b)) in the Device Model Window. The DF 

module lists the DFs of the DM. For a new model, the DF 

module is empty initially. To add a DF to this DM, the user first 

selects IDF or ODF from one of the two radio buttons in the 

“Add/Delete DF” module. For example, “IDF” is selected in 

Fig. 9 (c). Then the “Add/Delete DF” module shows all IDFs 

(Fig. 9 (d)) stored in the DB (Fig. 2 (7)). When the user selects a 

DF in the “Add/Delete DF” module, the DF is automatically 

displayed in the DF module (Fig. 9 (a)). The user may associate 

the DF with a tag selected from the Tag Parameter list (Fig. 9 

(e)). When the NB-IoT device sends a message, the NB-IoTtalk 

parses its payload to obtain the DF information, retrieve the 

IMEI from the message and assign it to the ID tag. 

 

 
The user clicks the “Save” button (Fig. 9 (f)) after he/she has 

selected all desired DFs. The GUI pops a dialog box for the user 

to input the name of the new DM (Fig. 9 (g)) to be saved in the 

DB. At this point, the DM is created, and can be selected and 

illustrated in the NB-IoTtalk GUI (Fig. 2), which is also shown 

in the NB-IoTtalk web page (Fig. 5 (2)) that generates Lines 1-3 

in Fig. 4.  

The user can modify existing DFs and DMs through the 

Device Feature and the Device Model Windows. The details 

are omitted. As we just pointed out, when a DM is created 

through the Device Model Window, the corresponding device 

profile in the JSON format is also created. This profile can be 

downloaded into an NB-IoT device as its IDE, and is stored in 

DB1 (Fig. 2 (11)). The payload of an NB-IoT message is then 

encoded and decoded at the IDE and DB1.  

IV. CONFIGURING THE NB-IOT APPLICATIONS 

This section uses smart parking lot and dog tacking as 

examples to illustrate how NB-IoT applications of NCTU are 

deployed in NB-IoTtalk. A parking NB-IoT device installed in 

the NCTU parking lot is surface mounted (Fig. 10), which is 

13.5cm in diameter and 3.5cm in height. This device uses a 

magnetometer where the detection coverage ranges from 500m 

to 5Km (line-of-sky), and converts the magnetism measure to 0 

or 1 to represent the occupancy of the parking space. The 

device is powered by 3.7V (three 1/2 AA batteries) operated at 

900MHz LTE spectrum. We plan to install over 200 parking 

sensors on campus. At the early stage, 20 NB-IoT parking 

sensors have been deployed. 

 

 
The NCTU smart parking application can be easily created 

by configuring three icons in Fig. 3, where ParkingStatus is a 

display device that receives the location (the Location ODF; 

Fig. 3 (3)) and the parking sensor status (the ParkSensor ODF; 

Fig. 3 (4)) from the ParkingLot icon through the links Join 1 

and Join 2. In our design, all IDFs connected to ParkingStuatus 

must associate with the ID tag. ParkingStatus lists the status of 

each parking sensor and the history line chart for that sensor in 

a web page (Fig. 11). ParkingStatus also counts the number of 

empty spaces, which can be accessed through the EmptyNum 

IDF. This IDF is a counter associated with the GeoData tag. 

The attribute parameter is an integer representing the number of 

empty spaces. The EmptyNum IDF is connected to a Map icon 

(Fig. 3 (d)) through Join 3, and the map shows the number of 

available parking spaces in the map (see Fig. 12; the dark green 

rectangle indicates 8 empty parking spaces in this example). All 

IDFs connected to Map must associate with the GeoData tag. 

 

 
Fig. 3 also includes a DogTracking icon connected to Map 

through Join 6. The DogID IDF (Fig. 3 (7)) is associated with 

the GeoData tag to provide the locations of the dogs been 

tracked (Fig. 13). In this IDF, the dog identities are considered 

as an attribute parameter. Fig. 12 shows tracking of two dogs 

represented by green circles marked with the blue number 0 

(the first dog) and the orange number 1 (the second dogs) with 

 
Fig. 9.  Device model creation. 

  

 
Fig. 10.  NCTU parking application using NB-IoT. 

 

 
Fig. 11.  The web page for ParkingStatus (Green: empty; Red: occupied). 
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the tails (colored line segments) indicating the historic traces of 

the moving dogs. Note that when we first developed the dog 

tracking application [17], the tag mechanism was not invented, 

and have to manually create an IDF that includes both DogID 

and GeoData, which results in extra effort in connecting the dog 

tracking mechanism to the map. 

 

 
In the dog tracking application, the tracking sensor (Fig. 13 

(a)) periodically reports the location of a dog (Fig. 13 (b)). 

Modeling of periodic reporting is given in [17], and the details 

will not be presented in this paper. On the other hand, 

event-triggered reporting is exercised in the parking lot 

application, where a parking sensor sends messages only when 

its status is changed. Event-triggered reporting consumes less 

power than periodic reporting. The problem of event-triggered 

reporting is that it is impossible to detect when the sensor fails 

to send messages to the network. To resolve this issue, a 

time-to-live (TTL) mechanism is required to detect sensor 

outage. TTL is similar to periodical reporting but is designed 

such that message sending is less frequent than periodic 

reporting. The TTL mechanism is investigated in the next 

section. 

V. PERFORMANCE EVALUATION FOR SMART PARKING LOT 

This section uses smart parking lot as an example to 

elaborate on the performance issue for event-triggered NB-IoT 

message delivery. 

The TTL interval can be determined based on the 

characteristics of the applications as follows. Let 𝑇𝑝  be the 

period between two consecutive TTL reports. If 𝑇𝑝 is small, 

then short battery life of the sensor is expected. On the other 

hand, If 𝑇𝑝 is large, it takes longer time to detect sensor outage. 

The tradeoff between TTL reporting frequency and outage 

detection accuracy can be modeled as follows. 

 

 
Consider the timing diagram in Fig. 14. Suppose that two 

consecutive TTL reports are sent by a parking sensor at 𝜏∗ and 

𝜏𝑝
∗  respectively, where 𝜏∗ < 𝜏𝑝

∗ . Suppose that the NB-IoT 

communications of the sensor is disconnected at time 𝜏0
∗, where 

𝜏∗ < 𝜏0
∗ < 𝜏𝑝

∗ .  Before 𝜏0
∗, the last status change of the parking 

sensor occurs at 𝜏0. For 𝑛 ≥ 1, suppose that the parking sensor 

attempts to send 𝑛 − 1 status changes to the network during 

[𝜏0
∗, 𝜏𝑝

∗] but fails, where the i-th status change occurs at 𝜏𝑖 for 

0 < 𝑖 < 𝑛. If 𝑛 = 1 then there is no status change in [𝜏0
∗, 𝜏𝑝

∗]. 

Let 𝑡𝑖 = 𝜏𝑖 − 𝜏𝑖−1 be i.i.d. random variable with the density 

function 𝑓(𝑡𝑖). Then 𝑡1
∗ = 𝜏1 − 𝜏0

∗ is the residual life of 𝑡1. The 

NB-IoT disconnection occurring at 𝜏0
∗ can be considered as a 

random observer of the 𝑡1 period, and from the residual life 

theorem [18], 𝑡1
∗ has the density function  

𝑟1(𝑡1
∗) = {

1

 E[𝑡1]
} [ 1 − ∫ 𝑓(𝑡)𝑑𝑡

𝑡1
∗

𝑡=0

]                   (1) 

Let 𝑓∗(𝑠) be the Laplace Transform of the density function 

𝑓(𝜏𝑖), then 

𝑓∗(𝑠) =   ∫ 𝑓(𝜏𝑖)
∞

𝑠=0

 𝑒−s𝜏𝑖𝑑𝜏𝑖                       (2) 

From (1) and (2) the Laplace transform of 𝑟1(𝑡1
∗) is 

𝑟1
∗(𝑠) =

1 − 𝑓∗(𝑠)

 E[𝑡1]𝑠
                                      (3) 

For 𝑛 > 2, let 𝑇𝑛 = 𝜏𝑛−1 − 𝜏0
∗ = 𝑡1

∗ + ∑ 𝑡𝑖 
𝑛−1
𝑖=2 , and 𝑇2 = 𝑡1

∗. 

Let 𝑓𝑛(𝑇𝑛) be the density function of 𝑇𝑛. Then from (3) and the 

convolution of Laplace transform, we have 

𝑓𝑛
∗(𝑠) = {

1 − 𝑓∗(𝑠)

 E[𝑡1]𝑠
} [𝑓∗(𝑠)]𝑛−2  for 𝑛 ≥ 2           (4) 

Let 𝑇𝑝 = 𝜏𝑝
∗ − 𝜏∗  be the period between two consecutive 

TTL reports. For 𝐾 ≥ 1,  suppose that 𝑇𝑝 has the 𝐾 -Erlang 

density function  

 𝑓𝑝(𝑇𝑝) =
𝜆𝐾𝑇𝑝

𝐾−1𝑒−𝜆𝑇𝑝

 (𝐾 − 1)!
 

This distribution is considered because the mixture of the 

Erlang distributions is widely used in modeling the 

transmission delay in telecommunications networks. Since the 

NB-IoT disconnection occurring at 𝜏0
∗ is a random observer of 

the 𝑇𝑝 period, from (1), the residual life of 𝑇𝑝 is 𝑇𝑝
∗ = 𝜏𝑝

∗ − 𝜏0
∗, 

which has the density function  

𝑟𝑝(𝑇𝑝
∗) = (

𝜆

 𝐾
) [ 1 − ∫  𝑓𝑝(𝑡)𝑑𝑡

𝑇𝑝
∗

𝑡=0

] 

= (
𝜆

 𝐾
) [ ∑

𝜆𝑘𝑇𝑝
∗𝑘𝑒−𝜆𝑇𝑝

 𝑘!

𝐾−1

𝑘=0

]                    (5) 

Let 𝑁  be the random variable representing that there are  

𝑁 − 1 status changes in the 𝑇𝑝
∗ period. Then Pr[𝑁 = 𝑛]  is the 

 
Fig. 12.  The web page for Map. 

 

        
(a)                                                          (b) 

Fig. 13.  NCTU dog tracking application: (a) a tracker with the GPS receiver; 

(b) the tracked dog with ID 0. 
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Fig. 14.  Timing diagram for modeling sensor outage detection. 
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probability that 𝑛 − 1 status changes are not received by the 

network before NB-IoT disconnection is detected. From (5) and 

for 𝑁 > 1,we have 

Pr[𝑁 = 𝑛] 

= ∫ ∫ ∫ 𝑓(𝑡𝑛) 𝑓𝑛(𝑇𝑛) 𝑟𝑝(𝑇𝑝
∗)

𝑇𝑛+𝑡𝑛

𝑇𝑝
∗=𝑇𝑛

∞

𝑇𝑛=0

∞

𝑡𝑛=0

 𝑑𝑇𝑝
∗𝑑𝑇𝑛𝑑𝑡𝑛 

= (
𝜆

 𝐾
) × 

∫ 𝑓(𝑡𝑛) ∫  𝑓𝑛(𝑇𝑛) ∫ [ ∑
𝜆𝑘𝑇𝑝

∗𝑘𝑒
−𝜆𝑇𝑝

∗

 𝑘!

𝐾−1
𝑘=0 ]

𝑇𝑛+𝑡𝑛
𝑇𝑝
∗=𝑇𝑛

∞

𝑇𝑛=0

∞

𝑡𝑛=0
 𝑑𝑇𝑝

∗𝑑𝑇𝑛𝑑𝑡𝑛  

= (
1

 𝐾
) ∫ 𝑓(𝑡𝑛)∫  𝑓𝑛(𝑇𝑛)

∞

𝑇𝑛=0

∞

𝑡𝑛=0

 

     × {∑ [1 − ∑
(𝜆𝑇𝑝

∗)
𝑗
𝑒−𝜆𝑇𝑝

∗

 𝑗!

𝑘

𝑗=0

]|

𝑇𝑝
∗=𝑇𝑛

𝑇𝑝
∗=𝑇𝑛+𝑡𝑛𝐾−1

𝑘=0

}𝑑𝑇𝑛𝑑𝑡𝑛  

= (
1

 𝐾
) ∫ 𝑓(𝑡𝑛)∫  𝑓𝑛(𝑇𝑛)

∞

𝑇𝑛=0

∞

𝑡𝑛=0

 

     × (
1

 𝐾
) {∑{∑

(𝜆𝑇𝑛)
𝑗𝑒−𝜆𝑇𝑛

 𝑗!

𝑘

𝑗=0

𝐾−1

𝑘=0

 

     −∑
[𝜆(𝑇𝑛 + 𝑡𝑛)]

𝑗𝑒−𝜆(𝑇𝑛+𝑡𝑛)

 𝑗!

𝑘

𝑗=0

}}𝑑𝑇𝑛𝑑𝑡𝑛 

= (
1

 𝐾
) ∫  𝑓𝑛(𝑇𝑛) {∑ [∑

(𝜆𝑇𝑛)
𝑗𝑒−𝜆𝑇𝑛

 𝑗!

𝑘

𝑗=0

]

𝐾−1

𝑘=0

}
∞

𝑇𝑛=0

 𝑑𝑇𝑛 

    − (
1

 𝐾
) ∫ 𝑓(𝑡𝑛)∫  𝑓𝑛(𝑇𝑛)

∞

𝑇𝑛=0

∞

𝑡𝑛=0

 

    × {∑{∑(
𝑘

𝑗
) 𝑇𝑛

𝑗𝑡𝑛
𝑘−𝑗 [

𝜆𝑗𝑒−𝜆(𝑇𝑛+𝑡𝑛)

 𝑗!
]

𝑘

𝑗=0

 }

𝐾−1

𝑘=0

}𝑑𝑇𝑛𝑑𝑡𝑛 

=
𝐴 − 𝐵

 𝐾
                                                                                            (6) 

where 

𝐴 = ∫  𝑓𝑛(𝑇𝑛) {∑ [∑
(𝜆𝑇𝑛)

𝑗𝑒−𝜆𝑇𝑛

 𝑗!

𝑘

𝑗=0

]

𝐾−1

𝑘=0

}
∞

𝑇𝑛=0

 𝑑𝑇𝑛 

= ∑∑{∫  𝑓𝑛(𝑇𝑛)
∞

𝑇𝑛=0

[
(𝜆𝑇𝑛)

𝑗𝑒−𝜆𝑇𝑛

 𝑗!
] 𝑑𝑇𝑛}

𝑘

𝑗=0

𝐾−1

𝑘=0

         (7) 

From the frequency-domain general derivative of Laplace 

transform, we have 

∫ 𝑇𝑛
𝑗𝑓𝑛(𝑇𝑛)𝑒

−s𝑇𝑛𝑑𝑇𝑛

∞

𝑇𝑛=0

= (−1)𝑗 [
𝑓𝑛
∗(𝑗)(𝑠)

d𝑠𝑗
]        (8) 

From (8), (7) is simplified as  

𝐴 = ∑∑[
(−𝜆)𝑗

 𝑗!
] [
𝑓𝑛
∗(𝑗)(𝑠)

d𝑠𝑗
]|

𝑠=𝜆

𝑘

𝑗=0

𝐾−1

𝑘=0

                             (9) 

In (6), B is rewritten as 

𝐵 = ∫ 𝑓(𝑡𝑛)∫  𝑓𝑛(𝑇𝑛)
∞

𝑇𝑛=0

∞

𝑡𝑛=0

 

        × {∑∑(
𝑘

𝑗
) 𝑇𝑛

𝑗𝑡𝑛
𝑘−𝑗 [

𝜆𝑗𝑒−𝜆(𝑇𝑛+𝑡𝑛)

 𝑗!
]

𝑘

𝑗=0

𝐾−1

𝑘=0

}𝑑𝑇𝑛𝑑𝑡𝑛 

= ∫ 𝑓(𝑡𝑛)∫  𝑓𝑛(𝑇𝑛)
∞

𝑇𝑛=0

∞

𝑡𝑛=0

 

     × {∑∑(
𝑘

𝑗
) (
𝜆𝑗

 𝑗!
)

𝑘

𝑗=0

[𝑇𝑛
𝑗𝑒−𝜆𝑇𝑛][𝑡𝑛

𝑘−𝑗𝑒−𝜆𝑡𝑛]

𝐾−1

𝑘=0

}𝑑𝑇𝑛𝑑𝑡𝑛 

= ∑∑(
𝑘

𝑗
) (
𝜆𝑗

 𝑗!
)

𝑘

𝑗=0

[∫  𝑓𝑛(𝑇𝑛)
∞

𝑇𝑛=0

𝑇𝑛
𝑗𝑒−𝜆𝑇𝑛𝑑𝑇𝑛]

𝐾−1

𝑘=0

 

    × [∫ 𝑓(𝑡𝑛)
∞

𝑡𝑛=0

𝑡𝑛
𝑘−𝑗𝑒−𝜆𝑡𝑛  𝑑𝑡𝑛] 

= ∑∑(
𝑘

𝑗
)

𝑘

𝑗=0

[
(−𝜆)𝑗𝜆𝑘−𝑗

 𝑗!
] {[
𝑓𝑛
∗(𝑗)(𝑠)

d𝑠𝑗
] [
𝑓
∗(𝑘−𝑗)(𝑠)

d𝑠𝑘−𝑗
]}|

𝑠=𝜆

𝐾−1

𝑘=0

 (10) 

Substitute (9) and (10) into (6) to yield 

Pr[𝑁 = 𝑛] = ∑∑[
(−𝜆)𝑗

𝐾 (𝑗!)
]

𝑘

𝑗=0

𝐾−1

𝑘=0

 

× {[
𝑓𝑛
∗(𝑗)(𝑠)

d𝑠𝑗
] {1 − (

𝑘

𝑗
) 𝜆𝑘−𝑗 [

𝑓
∗(𝑘−𝑗)(𝑠)

d𝑠𝑘−𝑗
]}}|

𝑠=𝜆

(11) 

For N=1, from (5) 

Pr[𝑁 = 1] = 1 − Pr[𝑁 > 2] 

= 1 −∫ ∫ 𝑟1(𝑡1
∗) 𝑟𝑝(𝑇𝑝

∗)
∞

𝑇𝑝
∗=𝑡1

∗

∞

𝑡1
∗=0

 𝑑𝑇𝑝
∗𝑑𝑡1

∗    

= 1 − ∫ 𝑟1(𝑡1
∗)∫ [ ∑

𝜆𝑘𝑇𝑝
∗𝑘𝑒−𝜆𝑇𝑝

∗

 𝑘!

𝐾−1

𝑘=0

]
∞

𝑇𝑝
∗=𝑡1

∗

∞

𝑡1
∗=0

 𝑑𝑇𝑝
∗𝑑𝑡1

∗ 

= 1 − ∫ 𝑟1(𝑡1
∗) [ ∑∑

(𝜆𝑡1
∗)𝑗𝑒−𝜆𝑡1

∗

 𝑗!

𝑘

𝑗=0

𝐾−1

𝑘=0

 ]
∞

𝑡1
∗=0

 𝑑𝑡1
∗   (12) 

Similar to the derivation for (7)-(9), (12) is re-written as 

 Pr[𝑁 = 1] = 1 − ∑∑[
(−𝜆)𝑗

 𝑗!
] [
𝑟1
∗(𝑗)(𝑠)

d𝑠𝑗
]|

𝑠=𝜆

𝑘

𝑗=0

𝐾−1

𝑘=0

    (13) 

For 𝐾 = 1, (12) is simplified as 

Pr[𝑁 = 𝑛] = 𝑓𝑛
∗(𝜆)[1 − 𝑓∗(𝜆)]        for 𝑁 > 1         (14) 

and (13) is re-written as  

Pr[𝑁 = 1] = 1 − 𝑟1
∗(𝑠) = 1 −

1 − 𝑓∗(𝜆)

 E[𝑡1]𝜆
                  (15) 

Substitute (4) into (14) to yield 

Pr[𝑁 = 𝑛] =
[1 − 𝑓∗(𝜆)]2[𝑓∗(𝜆)]𝑛−2

 E[𝑡1]𝜆
      for 𝑁 > 1   (16) 

If 𝑡𝑖  has the Gamma distribution with the expected value 

E[𝑡𝑖] = 𝛼/β, we have  

𝑓(𝑡𝑖) =
β𝛼𝑡𝑖

𝛼−1𝑒−β𝑡𝑖

 Γ(𝛼)
                            (17) 

where 𝛼  is the shape parameter and 1/β is the scale 

parameter. The Gamma distribution is a general form of the 

Erlang distribution, and is widely used in telecommunications 

network modeling [19], [20]. The Laplace transform of (17) is  
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𝑓∗(𝑠) =
β𝛼

(s + β)𝛼
                                 (18) 

Substitute (18) into (16) and (15) to yield 

 

Pr[𝑁 = 𝑛] = {
(
β

 𝛼𝜆
) [1 − (

β

𝜆+β
)
𝛼

]
2

(
β

𝜆+β
)
𝛼(𝑛−2)

 for 𝑁 > 1

1 − (
β

 𝛼𝜆
) [1 − (

β

𝜆+β
)
𝛼

]                  for 𝑁 = 1
       

(19) 

We validate the boundary conditions of (19) as follows. For 

𝑁 = 1, as 𝜆 approaches ∞, Pr[𝑁 = 1] should approach 1. We 

have 

lim
𝜆→∞

Pr[𝑁 = 1] = lim
𝜆→∞

1 − (
β

 𝛼𝜆
) [1 − (

β

𝜆 + β
)
𝛼

] = 1 − 0 × 1

= 1 

For 𝑛 > 1, as 𝜆 approaches ∞, Pr[𝑁 = 𝑛] should approach 

0. From (19), we have 

lim
𝜆→∞

Pr[𝑁 = 𝑛] = lim
𝜆→∞

(
β

 𝛼𝜆
) [1 − (

β

𝜆 + β
)
𝛼

]

2

(
β

𝜆 + β
)
𝛼(𝑛−2)

= 0 × ( 1 − 1) × 1 = 0 

As 𝜆 approaches 0, Pr[𝑁 = 1] should approach 0. In (19), 

the limit of (
β

 𝛼𝜆
) [1 − (

β

𝜆+β
)
𝛼

] has the 
0

 0
 form. By using the 

L'Hôpital's rule 

lim
𝜆→0

(
β

 𝛼𝜆
) [1 − (

β

𝜆 + β
)
𝛼

] = lim
𝜆→0

(
β

 𝛼
)

{
 
 
 

 
 
 
{
𝑑 [1 − (

β
𝜆 + β

)
𝛼

]

𝑑𝜆
}

[
𝑑(𝜆)
𝑑𝜆

]

}
 
 
 

 
 
 

 

= lim
𝜆→0

(
β

 𝛼
)

[
 
 
 (
𝛼
β
) (

β
𝜆 + β

)
𝛼+1

1
]
 
 
 

= 1             (20) 

Substitute (20) into (19) for N=1, we have 

lim
𝜆→0

Pr[𝑁 = 1] = lim
𝜆→0

1 − (
β

 𝛼𝜆
) [1 − (

β

𝜆 + β
)
𝛼

] = 1 − 1 = 0 

 

 
Fig. 15 plots the histogram of 𝑡𝑖  (in percentage of 

occurrences) for the visitor parking lot of the administration 

building at NCTU. Most visitors spend roughly 1-4 hours in 

this building for business. The histogram has the mean E[𝑡𝑖] = 

3.1874 hours and the variance V[ 𝑡𝑖 ] = 16.6857 hour
2
= 

1.64237E[𝑡𝑖]
2
 We approximate the histogram by the Gamma 

distribution with the shape parameter 𝛼 =0.60886 and the scale 

parameter  β = 0.19102. Fig. 15 shows that the Gamma 

distribution nicely fits the histogram. 

The analytic model (i.e., Equation (19)) is used to validate an 

event-driven simulation we developed in Appendix A. The 

analytic model and the simulation experiments are compared 

with various parameter setups. For all cases we considered, the 

discrepancies are less than 0.4%.  

Then we use the simulation experiments and the measured 

data in Fig. 15 to investigate the relationship between 𝑇𝑝 and 

Pr[𝑁 = 𝑛]. To save the energy consumption of the NB-IoT 

devices, a long 𝑇𝑝 should be selected. On the other hand, a short 

𝑇𝑝 should be selected to ensure a small amount of lost sensor 

data (i.e., a large Pr[𝑁 = 1] and a small E[𝑁]). It is clear that 

𝑇𝑝, Pr[𝑁 = 1] and E[𝑁] are conflicting output measures. 

 

 
Fig. 16 illustrates the probabilities Pr[𝑁 = 𝑛]  against 

E[ 𝑇𝑝 ]/E[ 𝑡𝑖 ] (for 1 ≤ 𝑁 ≤ 4 ). The figure shows that the 

probability Pr[𝑁 = 1]  (i.e., the parking status is up to date 

when connection failure is detected) decreases as E[ 𝑇𝑝 ] 

increases. The curve indicates that by decreasing E[𝑇𝑝] from 

E[𝑡𝑖] to 0.25E[𝑡𝑖] , the Pr[𝑁 = 1] performance is improved by 

48.77% for Exponential E[𝑇𝑝], and 32.35% for fixed E[𝑇𝑝]. On 

the other hand, by decreasing E[𝑇𝑝] from 0.25E[𝑡𝑖] to 0.0625 

E[𝑡𝑖 ] , the Pr[𝑁 = 1] performance is improved by 15% for 

Exponential E[𝑇𝑝], and 8.5% for fixed E[𝑇𝑝]. In other words, 

for E[𝑇𝑝] ≥ 0.25E[𝑡𝑖] , Pr[𝑁 = 1]  performance is effectively 

improved as E[𝑇𝑝] decreases. For E[𝑇𝑝] ≤ 0.25E[𝑡𝑖], Pr[𝑁 =

1] performance is insignificantly improved as E[𝑇𝑝] decreases. 

Therefore, it is appropriate to select a small E[𝑇𝑝] ≥ 0.25E[𝑡𝑖]. 

For 𝑛 ≥ 2 , Pr[𝑁 = 𝑛]  increases and then decreases as 

E[𝑇𝑝] increases. As 𝑁 increases, the peaks of the curves shift to 

the right. The Pr[𝑁 = 1] values for fixed E[𝑇𝑝] is larger than 

that for Exponential E[𝑇𝑝]. For 𝑛 ≥ 2 , When E[𝑇𝑝]  is small 

 
Fig. 15.  Histogram of 𝑡𝑖 and the Gamma density function. 

 

 
Fig. 16.  Pr[𝑁 = 𝑛] against E[𝑇𝑝]/E[𝑡𝑖]. 
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Pr[𝑁 = 𝑛] for fixed E[𝑇𝑝] is smaller than that for Exponential 

E[𝑇𝑝]. When E[𝑇𝑝] is large Pr[𝑁 = 𝑛] for fixed E[𝑇𝑝] is larger 

than that for Exponential E[𝑇𝑝]. 

 

 
Fig. 17 shows the effect of the variance V[𝑡𝑖] on the expected 

number E[𝑁 − 1] of missed status changes before the 

connection failure is detected. The figure indicates that the 

E[𝑁 − 1] performance for fixed E[𝑇𝑝] is better than that for 

Exponential E[𝑇𝑝], which is not affected by the variance V[𝑡𝑖]. 

Fig. 18 illustrates the probability Pr[𝑁 = 1] against the 

variance V[𝑡𝑖] and E[𝑇𝑝]/E[𝑡𝑖]. This figure shows a non-trivial 

result where Pr[𝑁 = 1] is an increasing function of V[𝑡𝑖]. That 

is, for a larger V[𝑡𝑖], it is more likely that no status change 

information is lost when the network failure is detected. This 

phenomenon is explained as follows. When V[𝑡𝑖] is large, more 

long 𝑡𝑖  intervals are observed, and it is more likely that 𝑇𝑝
∗ < 𝑡1

∗, 

and therefore a large E[𝑁 = 1] is expected. 

 

 

VI. RELATED WORK 

This section compares NB-IoTtalk with the related studies.  

The work [21] proposed an architecture-driven approach based 

on model-driven architecture (MDA) to enable automatic 

generation of a Wireless Sensor and Actuator Network 

middleware tailored to the requirements elucidated by the 

system architects. Based on a design flow, [22] takes the 

application software, the hardware specification 

(communication protocols and sensor network platforms) and 

the mapping between them as inputs to construct a system 

model in Behavior Interaction Priority (BIP) framework. Both 

MDA and BIP provide good paradigms for developing IoT 

applications, and the details can be found in [21] and [22]. 

Similar to these two approaches, IoTtalk automatically 

generates the network applications. The major differences are 

that IoTtalk develops the whole system centered at the device 

feature and the device model concepts, and a network 

application is automatically generated to interact between the 

IDFs and the ODFs. Furthermore, a user friendly GUI is 

included in IoTtalk that allows the user to modify the network 

applications without any or with little programming effort. 

Although NB-IoTtalk enjoys the IoTtalk features mentioned 

above, it is not incremental improvement of IoTtalk. 

NB-IoTtalk makes the following major contributions not found 

in IoTtalk [10][11]: 

 Automatic generation of Device Application: In IoTtalk, the 

creation of DAs for IoT devices are the responsibility of 

users. In this paper, the DAs for various NB-IoT 

applications (Fig. 2 (5)) are automatically created. 

 Automatic parsing the message payloads for IDFs and 

ODFs: Different NB-IoT applications send different types 

of IoT data to the network. Since the IoT data are stored in 

the payloads of NB-IoT messages in the JSON format (Fig. 

4), we can automatically parse the DF values and create the 

corresponding icons in the IoTtalk GUI (Fig. 3).  

 Extending IoTtalk with the tag concept that allows the DF 

attributes to associate with the tags: Without tags, the 

previous approaches need to manually create various DFs 

with the same attribute. With the ID tag, we can handle 

multiple devices by one DA, and represent all of them by 

one icon in the IoTtalk GUI. We can also group the NB-IoT 

devices into subgroups (Fig. 5). With the GeoData tag, 

multiple NB-IoT devices can be easily shown in the map 

output device (Fig. 12) without extra programming effort. 

 Proposing service platform interworking by developing a 

DA to bridge other platforms to IoTtalk: We described how 

NB-IoT platform interworks with IoTtalk (Fig. 2).  

 Original modeling of event-triggered NB-IoT message 

delivery: Most TTL mechanisms [23] were investigated to 

balance data accuracy against the transmission cost between 

the servers and the clients. In Apache and Squid, a TTL 

interval is defined for data entries stored in the mobile 

devices. The TTL for a data entry is determined based on 

whether the data entry is modified due to either a mobile 

query or a server update, which involves the data access 

times and the TTL expiration time. On the other hand, in 

event-triggered NB-IoT message delivery, we need to detect 

if a message does not arrive at the server; i.e., we also need 

to consider the sensor failure (unavailable) times. 

Therefore, the analysis in this paper is more complicated 

than that in [23].  

VII. CONCLUSIONS 

Many outdoor IoT applications involve large numbers of 

homogeneous NB-IoT devices, and it is tedious to specify and 

accommodate these devices in application development. This 

 
Fig. 17.  E[𝑁 − 1] against E[𝑇𝑝]/E[𝑡𝑖] and V[𝑡𝑖]. 

 

 
Fig. 18.  Pr[𝑁 = 1] against V[𝑡𝑖] and E[𝑇𝑝]/E[𝑡𝑖]. 
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paper proposed the NB-IoTtalk service platform for fast 

development of NB-IoT applications, which utilizes a tag 

mechanism to resolve this issue. In our approach, every sensor 

and every actuator in an IoT application can be associated with 

a tag. We define five types of tags:  Identity (ID), Geographic 

Data (GeoData), Time (T), Battery (B), and Privacy (P). With 

this tag mechanism, NB-IoTtalk provides an 

easy-to-manipulate GUI to accommodate a large number of 

NB-IoT devices in an application with the ID tag, and illustrate 

them to a visual map using the GeoData tag. Our approach 

automatically creates and parses the device profile used to 

interpret the payload of an NB-IoT message.  

We then used a smart parking lot application as an example 

to show event-triggered reporting in NB-IoT. We conducted the 

on/off status measurements of the parking sensors in a NCTU 

parking lot, and developed an analytic model and simulation 

experiments to investigate the performance of event-triggered 

reporting in terms of the time-to-live (TTL) report frequency 

and the outage detection accuracy for the parking lot 

application. Our study provides the guidelines to set the TTL 

interval for NB-IoT event-triggered reporting. Specifically, for 

the NCTU parking lot, we suggest to selected fixed TTL 

interval 𝑇𝑝 = 0.25E[𝑡𝑖], where 𝑡𝑖  is the interval between two 

status changes of the parking sensor. 

In the future, we will extend multiple tags to associate with a 

DF, and in particular, employ the Privacy tag to fit privacy 

regulations of various countries. 

APPENDIX A. THE SIMULATION MODEL 

We have developed an event-driven simulation to compute 

Pr[𝑁 = 𝑛]. Several variables are defined. The event-driven 

simulation is repeated with 10
6
 replications. Let I be the number 

of replications performed so far. The simulation uses a Boolean 

variable f as a flag to indicate if the network is disconnected. An 

array N[I] is used to store the number of lost status changes 

before the failure is detected in the I-th replication. An event e 

consists of two fields: the timestamp e.t when the event occurs 

and the event type e.type. Three event types are defined:  

 Disconnection: the network is disconnected 

 StatusChange: the status of the parking sensor changes
 
 

 TTLreport: the parking sensor issues a TTL report 

The flowchart of the simulation is illustrated in Fig. A.1 with 

the following steps: 

Step A.1. The variables I and N[] are initialized to 0.  

Step A.2. The first Disconnection event e1 is created where 

its timestamp e1.t drawn from the Exponential distribution is 

generated by an Exponential random number generator 

RNG1(). Therefore, this network disconnection interval is a 

random observer of the StatusChange and the TTLreport 

time intervals. The variable f is set to false, and the number I of 

replications is incremented by one. This event is inserted in the 

event list. 

Step A.3. The first StatusChange event e2 is created. The 

timestamp e2.t is drawn from the Gamma distribution (with the 

shape parameter 𝛼 and the scale parameter 1/β) produced by a 

Gamma random number generator RNG2(). This event is 

inserted in the event list. 

Step A.4. The first TTLreport event e3 is created where its 

timestamp is a fixed value or is drawn from the Erlang-K 

distribution generated by a random number generator RNG3(). 

The event is inserted in the event list. 

Step A.5. The event e with the smallest timestamp is 

removed from the event list.  

Step A.6. The event type e.type is checked. If e.type is 

Disconnection, Step A.7 is executed. If e.type is 

StatusChange, Step A.8 is executed. If e.type is TTLreport, 

Step A.11 is executed. 

Step A.7 (e.type is Disconnection). Flag f is set to true. The 

simulation flow goes to Step A.5. 

Step A.8 (e.type is StatusChange). The next StatusChange 

event e2 is created where its timestamp is set to e2.t=e.t+ 

RNG2(). The event e2 is inserted in the event list. 

Step A.9. Flag f is checked. If f is true (i.e., the network does 

not receive this status change), the simulation flow goes to Step 

A.10. Otherwise, the flow goes to Step A.5. 

Step A.10. N[I] is incremented by one. The simulation flow 

goes to Step A.5. 

Step A.11 (e.type is TTLreport). Flag f is checked. If f is 

true (i.e., the network detects that it does not receive the TTL 

report), the simulation flow goes to Step A.13. Otherwise, the 

flow goes to Step A.12. 

Step A.12. The next TTLreport event e3 is created where its 

timestamp is set to e3.t=e.t+ RNG3(). The event e3 is inserted 

in the event list. The simulation flow goes to Step A.5. 

Step A.13. If 𝐼 >10
6
, then report N[I] at Step A.14 and the 

simulation terminates. Otherwise, the flow goes to Step A.2 for 

the next replicated run. 
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