
IEEE INTERNET OF THINGS JOURNAL 1



Abstract—NarrowBand Internet of Things (NB-IoT) is

considered as a promising wireless communications technology

for Internet of Things (IoT) especially for the outdoor

environment. Many outdoor IoT applications involve large

numbers of homogeneous NB-IoT devices. It is tedious to specify

and accommodate these devices during application development.

To resolve this issue, this paper proposes a service platform for

fast development of NB-IoT applications called NB-IoTtalk. This

platform utilizes a tag mechanism to provide an

easy-to-manipulate graphical user interface (GUI) to

accommodate a large number of NB-IoT devices in an application

and transparently show them in a visual map. Our approach

automatically creates and parses the device profile used to

interpret the payload of an NB-IoT message. We then use a smart

parking lot application as an example to investigate the

event-triggered reporting of NB-IoT in terms of the time-to-live

report frequency and the outage detection accuracy. Our study

provides the guidelines to set the time-to-live interval for

event-triggered NB-IoT applications.

Index Terms—event-triggered, Low Power Wide Area Network

(LPWAN), NarrowBand Internet of Things (NB-IoT), parking

sensor, time-to-live.

I. INTRODUCTION

NTERNET of Things (IoT) is one of the mainstreams in

information and communications technology [1]-[3]. Over

the past 20 years, outdoor IoT wireless applications have been

developed based on the cellular telecommunications

technologies. These applications were deployed in either

GPRS/LTE based broadband services [4] or WLAN based

services [5]. Recently, Low Power Wide Area Network

(LPWAN) technologies have been developed for IoT

applications with low data rate transmission, e.g., LoRA [6],

EC-GSM-IoT [7] and NarrowBand Internet of Things (NB-IoT)

[8], [9]. To promote smart campus, National Chiao Tung

University (NCTU) is deploying several IoT-based smart

campus applications including temperature and PM2.5

monitoring, parking, emergency button, and dog tracking based

Y.-B. Lin, H.-C. Tseng, and Y.-W. Lin are with the Department of

Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan

(e-mail: liny@cs.nctu.edu.tw; u9220043@gmail.com; jyneda@gmail.com).
L.-J. Chen is with Institute of Information Science, Academia Sinica., Taipei

115, Taiwan (e-mail: cclljj@iis.sinica.edu.tw). This work was supported in part

by the Ministry of Science and Technology (MOST) under Grant
106-2221-E-009 -006 and Grant 106-2221- E-009 -049 - MY2, the Ministry of

Education through the SPROUT Project-Center for Open Intelligent

Connectivity of National Chiao Tung University, Taiwan, and Academia Sinica
AS-105-TP-A07.

on an IoT application management platform called IoTtalk

[10]-[13]. These applications utilize the NB-IoT devices.

Before elaborating on NB-IoT, we first introduce several

LPWAN technologies for IoT.

LoRaWAN is a LPWAN specification intended for battery

operated wireless IoT devices, which provides seamless

interoperability among IoT devices without the need of

complex local installations and gives back the freedom to the

users, the developers, and the businesses enabling the roll out of

IoTs. In our LoRA deployment at NCTU, the transmission

performance is not very good because LoRA is operated in the

unlicensed bands. The details can be found in [14].

As an extension technology of GSM, EC-GSM-IoT’s

uplink/downlink transmission rate ranges from 70 Kbps to 350

Kbps with Gaussian filtered Minimum Shift Keying (GMSK)

modulation, and up to 240kbps with 8-Phase-shift keying

(8-PSK) modulation. Every GSM base station can

accommodate 50,000 EC-GSM-IoT devices, where the standby

power of a device is 5Wh. for at least 10 years. Compared with

GPRS [4], the radio coverage of EC-GSM-IoT at 33dBm has

been increased by 20dB.

While compatible with FDD and TDD LTE [15], 3GPP

eMTC has removed some broadband transmission features not

needed in IoT to support 100,000 devices. At 3GPP Release 12

[16], eMTC is exercised at a high transmission rate up to

1Mbps using 1.08MHz bandwidth, which has 12dB radio

coverage increase as compared with GPRS. eMTC also

supports Voice Over LTE (VoLTE) [15], which is not found in

other IoT technologies. The standby power of an eMTC device

is 5Wh for at least 10 years.

NB-IoT is exercised with 180 kHz bandwidth under the LTE

NB-IoTtalk: A Service Platform for Fast

Development of NB-IoT Applications

Yi-Bing Lin, Fellow, IEEE, Hung-Chun Tseng, Yun-Wei Lin, and Ling-Jy Chen

I

NB-IoT Server

LTE Core Network

NB-IoT Device
41

2
3

T8/SGi

S1-MME/S1-U

Network

Application

LTE Base Station

MQTT 5

Fig. 1. The NB-IoT Network Architecture.

IEEE INTERNET OF THINGS JOURNAL 2

infrastructure. Fig. 1 illustrates the NB-IoT network

architecture. An NB-IoT device (Fig. 1 (1)) consists of the

sensors/actuators and the NB-IoT wireless module that

communicates with an LTE base station (Fig. 1 (2)), where the

unlink/downlink transmission rate is 250Kbps. The LTE base

station connects to the LTE core network (Fig. 1 (3)) through

the S1-MME/S1-U interface. The core network connects to the

NB-IoT Application Server (AS; Fig. 1 (4)) through the T8/SGi

interface.

The standby power of an NB-IoT device is 5Wh for at least

10 years. The NB-IoT radio coverage is the same as

EC-GSM-IoT (up to 20 Km in diameter), which supports

200,000 devices per base station. Furthermore, NB-IoT is

extended with multiple 180 kHz carriers to accommodate up to

millions of devices. To achieve better radio penetration, it is

recommended to operate NB-IoT at sub-1G spectrums (such as

700MHz, 800MHz or 900MHz).

NB-IoT aims to establish a LPWAN through the existing

LTE infrastructure. There are three alternatives for NB-IoT

deployment. In the Standalone mode, independent bandwidth is

allocated so that NB-IoT will not interfere with the LTE

operation. The Guard Band mode utilizes the LTE guard band,

which allows the operator to support NB-IoT without requiring

new spectrum and with minimal impact to LTE. The In-Band

mode directly occupies a LTE bandwidth to co-exist with the

LTE operation. In 2017, Chunghwa Telecom (the largest

telecom company in Taiwan) deployed Taiwan’s first NB-IoT

service with the In-Band mode in NCTU.

Based on the above description, NB-IoT has better

penetration than GSM, which gives good qualities for both

indoor and outdoor transmissions. To develop an NB-IoT

service, the developer needs to create a “network application”

(Fig. 1 (5); typically an application server in the Internet) that

connects to the NB-IoT Server. This network application

interacts with NB-IoT devices to provide a specific IoT service.

Development of an NB-IoT network application is a tedious

task, where a device profile is used to define how a network

application (Fig. 1 (5)) communicates with the corresponding

NB-IoT devices (Fig. 1 (1)). Specifically, the profile is used by

the network application to interpret the payload of a message

sent from the NB-IoT device. We will elaborate more on the

device profile later.

This paper shows how to develop fast NB-IoT network

applications through an application-level platform called

NB-IoTtalk. This platform integrates IoTtalk [10]-[13] with a

tag mechanism, which allows a developer to easily create IoT

applications (e.g., smart parking lot) with a large number of

NB-IoT devices through a web page. Such tool has not been

found in the literature. From the viewpoint of an NB-IoT

system, NB-IoTtalk is a network application, and therefore, can

be accommodated by LTE operators worldwide. This paper is

organized as follows. Section 2 describes the NB-IoTtalk

network architecture, and shows how to automatically create

the network applications from an existing device profile.

Section 3 proposes the tag mechanism and automatic creation

of the device profile. Section 4 uses NCTU parking lot as an

NB-IoT application and shows its performance in terms of the

time-to-live report frequency and the outage detection

accuracy.

II. THE NB-IOTTALK ARCHITECTURE AND AUTOMATIC

NETWORK APPLICATION CREATION

The philosophy of IoTtalk is centered at two concepts called

“device feature” (DF) and “device model” (DM). An input DF

is a sensor (such as a temperature sensor) or a controller unit

(such as a button). An output DF is an actuator (such as a lamp).

A DM is a collection of DFs. In IoTtalk, every IoT device can

be partitioned into an input and an output devices. The input

device is a subset of the IoT device, which consists of the input

DFs of that device. Similarly, the output device consists of the

output DFs of that device. In [12], we show how to

automatically create Arduino-based applications by

considering an Arduino board as an IoTtalk device. In this

paper, we further extend this capability to transparently map a

group of homogeneous NB-IoT devices to an IoTtalk device

called “NB-IoTtalk” device. This device (Fig. 2 (1)) consists of

two major components: the NB-IoT Application (Fig. 2 (4)) is

responsible for communication with the NB-IoT Server (Fig. 2

(2); see also Fig. 1 (4)) and a Device Application (DA; Fig. 2

(5)) is responsible for interaction with the IoTtalk Server (Fig. 2

(3)) through HTTP. Multiple DAs can be connected to the

NB-IoT Application to support various services such as parking,

dog tracking and smart home applications (Fig. 2 shows three

IoTtalk DAs).

The IoTtalk Server consists of two components: the engine

and multiple GUIs tailored for various application systems

(such as NB-IoTtalk and ArduTalk). The IoTtalk engine (Fig. 2

(6)) provides MQTT or HTTP based RESTful application

programming interfaces for the IoTtalk DA to deliver/retrieve

the IDF/ODF information to be saved in a database DB (Fig. 2

(7)). The NB-IoTtalk GUI (Fig. 2 (8)) provides a friendly

web-based user interface to quickly establish connections and

NB-IoTtalk Device

 NB-IoT Application

Web Server

 Msg Handler

User Event

Handler

1

2

ArduTalk

Device

IoTtalk

DA

Arduino

APP

 IoTtalk

 Server

3

 NB-IoTtalk GUI

9

 DB1

4

12

13

11

8

NB-IoT

Server

 DB7 ArduTalk GUI10

 DA3
 DA2

 IoTtalk DA15

IoTtalk Engine6

Fig. 2. NB-IoTtalk: Integrating NB-IoT and IoTtalk.

IEEE INTERNET OF THINGS JOURNAL 3

meaningful interactions among the NB-IoT devices. Through

the GUI, a user instructs the IoTtalk engine to execute desired

tasks to create or set up device features, functions, and

connection configurations. From the viewpoint of the NB-IoT

system, the NB-IoTtalk device is a network application (Fig. 1

(4)). From the viewpoint of IoTtalk, the NB-IoTtalk device is

an IoTtalk device. We have built other IoTtalk-based

application systems using IoTtalk DAs. For example, by

installing the IoTtalk IDE (Integrated Development

Environment) into an Arduino board, we build an ArduTalk

device (Fig. 2 (9)) [13] connected to the IoTtalk engine, which

can be accessed and manipulated by the ArduTalk GUI (Fig. 2

(10)). In the GUI window, an input device is represented by an

icon placed at the left of the window (Fig. 3 (a), (c), (e)), which

consists of smaller icons that represent IDFs (Fig. 3 (1), (2), (5),

and (7)). Similarly, an output device is represented by an icon

placed at the right-hand side of the window (Fig. 3 (b), (d)),

which includes ODF icons (Fig. 3 (3), (4), (6), and (8)). Note

that the ParkingStatus device has one IDF and two ODFs, and

therefore is represented by two icons (Fig. 3 (b) and (c)). By

connecting the IDFs to the ODFs through the line segments

(e.g., Joins 1-4), the devices interact with each other without the

need of any programing effort. Details of the devices in this

example will be elaborated in Section 4.

The network application of an NB-IoTtalk device (Fig. 2 (1))

can be automatically created by a device profile, and is

illustrated as input and/or output device icons in the NB-IoTtalk

GUI. This profile is typically a JSON file specified by the

NB-IoT operator or the NB-IoT device manufacturer. Our

approach saves this profile in the DB1 database (Fig. 2 (11)).

For the device profile given by a third-party NB-IoT device

manufacture, the NB-IoT application interacts with the IoTtalk

engine to automatically create the device icon shown in the

NB-IoTtalk GUI. This profile is preloaded into the database

DB1 (Fig. 2 (10)), which is retrieved and parsed by the Web

Server (Fig. 2 (12)) to encode/decode the DFs and their values

in the payload of every NB-IoT message. For example, the

profile for the ParkingLot device is listed below.

In the above JSON code, the device ID, i.e., International

Mobile Equipment Identity (IMEI) is given at Line 1. The

International Mobile Subscriber Identity (IMSI) number of the

SIM card inserted in this device is given at Line 2. Note that

different NB-IoT operators or device manufacturers may

provide different formats for the profile. For example, in the

profile provided by Chunghwa Telecom, the IMEI field is

named DEVID and the IMSI field is named SIMID. When the

Web Server parses Line 3, it creates the “ParkingLot” device

icon (Fig. 3 (a)). Lines 4-8 describe the DFs in the ParkingLot

DM. When Lines 5 and 6 are parsed, the Location IDF icon is

created (Fig. 3 (1)). Location data are typically produced by a

GPS receiver or can be input through a web page (to be

elaborated in Fig. 5 (4)). When Lines 7 and 8 are parsed, the

ParkSensor IDF icon is created (Fig. 3 (2)). This sensor gives

on/off status to indicate if a parking space is occupied.

After the device profile has been parsed, the user can access

the details of the devices through the NB-IoTtalk web page

illustrated in Fig. 5. This web page shows all NB-IoT devices

(Fig. 5 (1)) of a specific device model (Fig. 5 (2)). The user can

select the devices in a group, e.g., “NCTU-P2” (Fig. 5 (3)) to

indicate the parking sensors installed in NCTU’s parking lot 2.

In Fig. 5, the first and the third devices are selected.

Due to cost consideration, most commercial parking sensors

are not equipped with the GPS receivers. In this case, the

NB-IoTtalk web page allows manually specifying the location

of the parking lot (Fig. 5 (4)).

Fig. 3. An example of NB-IoT applications configured in the NB-IoTtalk GUI.

Line 1. “IMEI”: “3588780065690”,

Line 2. “IMSI”: “460100000001234”,

Line 3. “DM”: ParkingLot

Line 4. “DFs”: [{

Line 5. “DF”: Location

Line 6. “VALUE”: //[float, float]

},{

Line 7. “DF”: ParkSensor

Line 8. “VALUE”: // boolean

}]

Fig. 4. The device profile for ParkSensor.

Fig. 5. The NB-IoTtalk web page.

IEEE INTERNET OF THINGS JOURNAL 4

Fig. 6 illustrates the functional blocks of the NB-IoTtalk

Device in Fig. 2 (1). To connect the network application to the

NB-IoT Server (Fig. 6 (f)), the following steps are executed.

Steps 1-3: The User Event Handler of the Web Server (Fig. 6

(d)) initializes the MsgHandler (Fig. 6 (c)) to retrieve the

MQTT host address of the NB-IoT Server and the related

information from DB1 (Fig. 6 (e)).

Steps 4 and 5: The MsgHandler (Fig. 6 (c)) then invokes

connect() to establish an MQTT connection with the NB-IoT

Server.

Steps 6-9: The MsgHandler subscribes the MQTT topics

(i.e., Send/IoTtalk/pub in our example) through subscribe(),

and then invokes query_device() to retrieve the IMEIs and the

DFs of all NB-IoT devices connected to the NB-IoT Server.

Steps 10 and 11: The NB-IoT Server returns the queried

information back to the User Event Handler through

on_message(). The information is saved in DB1. At this point,

the NB-IoT Application is established, but no DA (Fig. 6 (b))

has been created yet.

After the user has set up an NB-IoT device group, e.g.,

NCTU-P2, and clicks the “Save” button in Fig. 5 (5), Steps

12-16 are executed to create the NCTU-P2 DA. Specifically,

the User Event Handler catches the “save” event from the

browser, and invokes reigster() to create the DA for NCTU-P2,

and then registers it to the IoTtalk Server (Fig. 6 (a)) with

SERVER_IP.

When an NB-IoT device in NCTU-P2 sends the data to the

network, Steps 10, 17, and 18 are executed: the NB-IoT Server

forwards the data to the IoTtalk Server through on_message()

in the NB-IoT Application and push() in the NCTU-P2 DA.

When the IoTtalk Server sends the data to an NB-IoT device

in NCTU-P2, Steps 19-21 are executed: the IoTtalk Server

sends the data to the NB-IoT Server by invoking pull() in the

DA and publish() in the NB-IoT Application.

When the user clicks the “Delete” button of NCTU-P2 in Fig.

5 (6), Steps 22-24 are executed: The User Event Handler

catches the “delete” event from the browser, and invokes

deregister() to delete the DA for NCTU-P2 after deregistering

it from the IoTtalk Server.

When the user terminates the NB-IoT service, the User Event

Handler disconnects the MQTT connection with Steps 22-26:

the User Event Handler first invokes deregister() to deregister

and delete all DAs (Steps 22-24), and then calls disconnect()

to end the connection to the NB-IoT Server (Steps 25 and 26).

III. AUTOMATIC CREATION OF DEVICE PROFILE

Both the NB-IoT device and the network application should

follow the same device profile for a specific NB-IoT device.

NB-IoTtalk automatically creates the profile by interaction

between the Web Server (Fig. 2 (12)) and the IoTtalk engine

(Fig. 2 (6)). The created profile is used as the IDE to be

installed in the NB-IoT devices as what we did for Arduino [12].

The IoTtalk engine allows creation of the DFs and accumulates

them in the database DB (Fig. 2 (7)). These DFs can be reused

by various applications. NB-IoTtalk automatically translates

these DFs into JSON format of the device profile. Many

important pieces of the DF information may not be specified in

the device profile, for example, the range [Min, Max] and the

unit of the values (e.g., °C or °F for temperature). In

NB-IoTtalk, such information is stored in DB1 and will be

handled by the NB-IoT application. To our knowledge,

transparent DF creation and reuse through the GUI has not been

found in the literature. To accommodate a large number of

homogeneous NB-IoT devices, we propose the “tag”

mechanism. In NB-IoTtalk, every DF may include two types of

parameters.

 The attribute parameters describe the values of a DF. For

example, a PM2.5 sensor is mapped to the PM2.5 DF that has

one attribute parameter to produce the particulate matter 2.5

measure in μ g/m3. A GPS receiver is mapped to the

Location DF that has two attribute parameters to specify the

latitude and the longitude.

 The tag parameters (or tags in short) provide extra

information associated with the DF. There are five types of

tags: Identity (ID), Geographic Data (GeoData), Time (T),

Battery (B), and Privacy (P).

The early IoTtalk version [11], [12] only defined the attribute

parameters for a DF. In NB-IoTtalk, the tags are defined to

conveniently manipulate the DFs. A tag itself is an attribute

parameter in the early IoTtalk version. For example, the

GeoData tag is derived from the Location DF (for a GPS sensor

or an iBeacon sensor) with two attribute parameters (i.e., the

latitude and the longitude), which provides geographic location

information of the DF. This tag is used to associate the DF with

a visual map.

The Time (T) tag specifies the time when a value of the DF is

generated. The Battery (B) tag indicates the battery life of that

DF, which is used for energy management of the DF (more

precisely, the device of that DF). The Privacy (P) tag gives the

privacy level of the DF, which is used when the privacy

regulation is enforced in the IoT applications.

In this paper, the most important tag is “Identity” (ID) used

to support applications with a large number of homogeneous

NB-IoT devices. The ID tag is derived from the Identity DF

with one attribute parameter. In this paper, the ID tag specifies

IoTtalk Server
HTTP

c MsgHandler

deregister()

on_message()

NB-IoT Server

4

register()

5

query_device()

MQTT

connect()

User

Event

Handler

(Web

Server)

 DB1

init()

subscribe()

NB-IoT Application

9

6

7

8

SERVER_IP

register()

get_device_id()

push() deregister()

CHT IoTtalk Device Groups

DA
b

2

3
1

publish()

pull()

disconnect()

Fig. 6. The functional blocks of the NB-IoTtalk Device.

IEEE INTERNET OF THINGS JOURNAL 5

the IMEI of an NB-IoT device. When NB-IoTtalk receives a

message sent from an NB-IoT device, it associates the IMEI of

that device to the corresponding DF(s). In the previous version

of IoTtalk, most applications typically involve heterogeneous

indoor IoT devices. For these devices, the DFs only need to be

specified through their attribute parameters. For example, an

indoor PM2.5 measurement application uses a PM2.5 IDF

without the ID tag. On the other hand, for long-range wireless

technologies such as NB-IoT, LoRA or Sigfox, many

applications involve homogeneous outdoor IoT devices. In

these applications, the DFs of the homogeneous devices are

distinguished by their identities. With the ID tag, the

NB-IoTtalk GUI can easily specify and accommodate any

number (e.g., thousands) of homogeneous devices in an

application and allows the number to dynamically change (i.e.,

you do not need to specify the number of the NB-IoT devices

and can add or remove them). For the outdoor PM2.5

measurement application with thousands of NB-IoT-based

PM2.5 sensor devices, these devices are represented by one

PM2.5 DF associated with the ID tag in NB-IoTtalk, where the

IDs distinguishes multiple homogeneous NB-IoT devices

grouped in this application.

The IoTtalk engine provides the Device Feature Window to

create and manage the DFs. In this web-based window, the user

can edit a new or an existing DF by manipulating their attribute

parameters. In Fig. 7, the GUI first displays two radio buttons

for IDF/ODF selection (initially, IDF is selected; see Fig. 7 (a))

and the “DF Name” list shows all DFs for the selected

IDF/ODF type (Fig. 7 (c)). The first item of the list is “add new

DF”, which can be clicked to create a new DF (to be elaborated).

If the user presses the ODF radio button (Fig. 7 (b)), all IDFs in

the “DF Name” list are replaced by all ODFs stored in the DB.

To create a new DF, the user selects the “add new DF” in the

“DF Name” list, and the GUI pops up the Attribute Parameter

module (Fig. 7 (d)). The rows of the module are created based

on the number of the attribute parameters (Fig. 7 (e)). The

default number is one. For each of the parameters, the Attribute

Parameter module includes

 the Type (i.e., the data types such as float, string and so on;

see Fig. 7 (f)),

 the Min (minimal) and Max (maximal) values (Fig. 7 (g)),

and

 the Unit (e.g., cm, m/s2 and so on; see Fig. 7 (h)).

For an IDF, the Min/Max values can be automatically

assigned through a dynamic ranging mechanism [11] and the

user does not need to fill these fields. For an ODF, if the

Min/Max fields are not filled, the ODF-parameters take

arbitrary values without range limits. The user edits them

according to the characteristics of the ODF provided in the

manufacture’s data sheet. For example, the status value of the

ParkSensor DF has the integer range [0, 1]. When the “Save”

button is clicked (Fig. 7 (i)), the GUI pops a dialog box for

inputting the name of the new DF (Fig. 7 (j)). Then the IoTtalk

engine stores the DF information into the DB (Fig. 2 (7)). For

example, in the Device Feature Window, if we select IDF (Fig.

7 (a)), one parameter (Fig. 7 (e)), the integer type (Fig. 7 (f)),

the min-max range [0, 1] (Fig. 7 (g)) and NULL unit (Fig. 7 (h)),

and give the DF name “ParkSensor” (Fig. 7 (j)), then Lines 7

and 8 in Fig. 4 is automatically generated. At the same time, the

min-max range and the unit for ParkSensor are saved in DB1.

The DFs created by the IoTtalk engine are used to build the

DMs. In the NB-IoTtalk GUI, every DM is represented by a

device icon that illustrates the DFs of the DM (see Fig. 3

(a)-(e)). If a DF of the DM has a tag parameter, then the first

letter of that tag is illustrated in the DF icon. For example, the

EmptyNum and the DogID DFs are labelled by “G” to indicate

that they are associated with GeoData (Fig. 3 (5), (6), (7) and

(8)). Similarly, the ParkSensor DFs associated with ID are

labeled “I” (Fig. 3 (1), (2), (3) and (4)). If a DF does not have

any tag, then no initialized letter is illustrated in the DF icon.

If no DF is associated with ID in the DM, then the user can

only connect one device of this DM to NB-IoTtalk by mapping

the device to the device icon in the NB-IoTtalk GUI. On the

other hand, if any DF of the DM is associated with the ID tag, a

group of NB-IoT devices are mapped to that device icon. In this

way, we can quickly and conveniently build the applications for

NB-IoT devices and replace the devices by others with different

tags.

The DMs are manipulated in the Model Management

Window. The user can select a DM through the “DM Name”

pull-down menu (Fig. 8 (a)) in the Device Model Window. The

first item in the list is “add new DM” (Fig. 8 (c)) that can be

clicked to create a new model. The Device Feature Window

(Fig. 8 (b)) is also shown besides the Device Model Window

for the user’s benefit: the user may need to know the details of a

specific device feature when he/she is configuring a DM.

Whether a DF has any tag or not depends on the DM that

includes this DF. The Device Model Window allows the user to

manipulate the DM with the Tag Parameter list (Fig. 9 (e); to be

Fig. 7. Device Feature Window.

Fig. 8. Device Model Window.

IEEE INTERNET OF THINGS JOURNAL 6

elaborated later). To create a new DM, the user selects the “add

new DM” in the “DM Name” pull-down menu, and the GUI

pops up both the DF module (Fig. 9 (a)) and the “Add/Delete

DF” module (Fig. 9 (b)) in the Device Model Window. The DF

module lists the DFs of the DM. For a new model, the DF

module is empty initially. To add a DF to this DM, the user first

selects IDF or ODF from one of the two radio buttons in the

“Add/Delete DF” module. For example, “IDF” is selected in

Fig. 9 (c). Then the “Add/Delete DF” module shows all IDFs

(Fig. 9 (d)) stored in the DB (Fig. 2 (7)). When the user selects a

DF in the “Add/Delete DF” module, the DF is automatically

displayed in the DF module (Fig. 9 (a)). The user may associate

the DF with a tag selected from the Tag Parameter list (Fig. 9

(e)). When the NB-IoT device sends a message, the NB-IoTtalk

parses its payload to obtain the DF information, retrieve the

IMEI from the message and assign it to the ID tag.

The user clicks the “Save” button (Fig. 9 (f)) after he/she has

selected all desired DFs. The GUI pops a dialog box for the user

to input the name of the new DM (Fig. 9 (g)) to be saved in the

DB. At this point, the DM is created, and can be selected and

illustrated in the NB-IoTtalk GUI (Fig. 2), which is also shown

in the NB-IoTtalk web page (Fig. 5 (2)) that generates Lines 1-3

in Fig. 4.

The user can modify existing DFs and DMs through the

Device Feature and the Device Model Windows. The details

are omitted. As we just pointed out, when a DM is created

through the Device Model Window, the corresponding device

profile in the JSON format is also created. This profile can be

downloaded into an NB-IoT device as its IDE, and is stored in

DB1 (Fig. 2 (11)). The payload of an NB-IoT message is then

encoded and decoded at the IDE and DB1.

IV. CONFIGURING THE NB-IOT APPLICATIONS

This section uses smart parking lot and dog tacking as

examples to illustrate how NB-IoT applications of NCTU are

deployed in NB-IoTtalk. A parking NB-IoT device installed in

the NCTU parking lot is surface mounted (Fig. 10), which is

13.5cm in diameter and 3.5cm in height. This device uses a

magnetometer where the detection coverage ranges from 500m

to 5Km (line-of-sky), and converts the magnetism measure to 0

or 1 to represent the occupancy of the parking space. The

device is powered by 3.7V (three 1/2 AA batteries) operated at

900MHz LTE spectrum. We plan to install over 200 parking

sensors on campus. At the early stage, 20 NB-IoT parking

sensors have been deployed.

The NCTU smart parking application can be easily created

by configuring three icons in Fig. 3, where ParkingStatus is a

display device that receives the location (the Location ODF;

Fig. 3 (3)) and the parking sensor status (the ParkSensor ODF;

Fig. 3 (4)) from the ParkingLot icon through the links Join 1

and Join 2. In our design, all IDFs connected to ParkingStuatus

must associate with the ID tag. ParkingStatus lists the status of

each parking sensor and the history line chart for that sensor in

a web page (Fig. 11). ParkingStatus also counts the number of

empty spaces, which can be accessed through the EmptyNum

IDF. This IDF is a counter associated with the GeoData tag.

The attribute parameter is an integer representing the number of

empty spaces. The EmptyNum IDF is connected to a Map icon

(Fig. 3 (d)) through Join 3, and the map shows the number of

available parking spaces in the map (see Fig. 12; the dark green

rectangle indicates 8 empty parking spaces in this example). All

IDFs connected to Map must associate with the GeoData tag.

Fig. 3 also includes a DogTracking icon connected to Map

through Join 6. The DogID IDF (Fig. 3 (7)) is associated with

the GeoData tag to provide the locations of the dogs been

tracked (Fig. 13). In this IDF, the dog identities are considered

as an attribute parameter. Fig. 12 shows tracking of two dogs

represented by green circles marked with the blue number 0

(the first dog) and the orange number 1 (the second dogs) with

Fig. 9. Device model creation.

Fig. 10. NCTU parking application using NB-IoT.

Fig. 11. The web page for ParkingStatus (Green: empty; Red: occupied).

IEEE INTERNET OF THINGS JOURNAL 7

the tails (colored line segments) indicating the historic traces of

the moving dogs. Note that when we first developed the dog

tracking application [17], the tag mechanism was not invented,

and have to manually create an IDF that includes both DogID

and GeoData, which results in extra effort in connecting the dog

tracking mechanism to the map.

In the dog tracking application, the tracking sensor (Fig. 13

(a)) periodically reports the location of a dog (Fig. 13 (b)).

Modeling of periodic reporting is given in [17], and the details

will not be presented in this paper. On the other hand,

event-triggered reporting is exercised in the parking lot

application, where a parking sensor sends messages only when

its status is changed. Event-triggered reporting consumes less

power than periodic reporting. The problem of event-triggered

reporting is that it is impossible to detect when the sensor fails

to send messages to the network. To resolve this issue, a

time-to-live (TTL) mechanism is required to detect sensor

outage. TTL is similar to periodical reporting but is designed

such that message sending is less frequent than periodic

reporting. The TTL mechanism is investigated in the next

section.

V. PERFORMANCE EVALUATION FOR SMART PARKING LOT

This section uses smart parking lot as an example to

elaborate on the performance issue for event-triggered NB-IoT

message delivery.

The TTL interval can be determined based on the

characteristics of the applications as follows. Let 𝑇𝑝 be the

period between two consecutive TTL reports. If 𝑇𝑝 is small,

then short battery life of the sensor is expected. On the other

hand, If 𝑇𝑝 is large, it takes longer time to detect sensor outage.

The tradeoff between TTL reporting frequency and outage

detection accuracy can be modeled as follows.

Consider the timing diagram in Fig. 14. Suppose that two

consecutive TTL reports are sent by a parking sensor at 𝜏∗ and

𝜏𝑝
∗ respectively, where 𝜏∗ < 𝜏𝑝

∗ . Suppose that the NB-IoT

communications of the sensor is disconnected at time 𝜏0
∗, where

𝜏∗ < 𝜏0
∗ < 𝜏𝑝

∗ . Before 𝜏0
∗, the last status change of the parking

sensor occurs at 𝜏0. For 𝑛 ≥ 1, suppose that the parking sensor

attempts to send 𝑛 − 1 status changes to the network during

[𝜏0
∗, 𝜏𝑝

∗] but fails, where the i-th status change occurs at 𝜏𝑖 for

0 < 𝑖 < 𝑛. If 𝑛 = 1 then there is no status change in [𝜏0
∗, 𝜏𝑝

∗].

Let 𝑡𝑖 = 𝜏𝑖 − 𝜏𝑖−1 be i.i.d. random variable with the density

function 𝑓(𝑡𝑖). Then 𝑡1
∗ = 𝜏1 − 𝜏0

∗ is the residual life of 𝑡1. The

NB-IoT disconnection occurring at 𝜏0
∗ can be considered as a

random observer of the 𝑡1 period, and from the residual life

theorem [18], 𝑡1
∗ has the density function

𝑟1(𝑡1
∗) = {

1

 E[𝑡1]
} [1 − ∫ 𝑓(𝑡)𝑑𝑡

𝑡1
∗

𝑡=0

] (1)

Let 𝑓∗(𝑠) be the Laplace Transform of the density function

𝑓(𝜏𝑖), then

𝑓∗(𝑠) = ∫ 𝑓(𝜏𝑖)
∞

𝑠=0

 𝑒−s𝜏𝑖𝑑𝜏𝑖 (2)

From (1) and (2) the Laplace transform of 𝑟1(𝑡1
∗) is

𝑟1
∗(𝑠) =

1 − 𝑓∗(𝑠)

 E[𝑡1]𝑠
 (3)

For 𝑛 > 2, let 𝑇𝑛 = 𝜏𝑛−1 − 𝜏0
∗ = 𝑡1

∗ + ∑ 𝑡𝑖
𝑛−1
𝑖=2 , and 𝑇2 = 𝑡1

∗.

Let 𝑓𝑛(𝑇𝑛) be the density function of 𝑇𝑛. Then from (3) and the

convolution of Laplace transform, we have

𝑓𝑛
∗(𝑠) = {

1 − 𝑓∗(𝑠)

 E[𝑡1]𝑠
} [𝑓∗(𝑠)]𝑛−2 for 𝑛 ≥ 2 (4)

Let 𝑇𝑝 = 𝜏𝑝
∗ − 𝜏∗ be the period between two consecutive

TTL reports. For 𝐾 ≥ 1, suppose that 𝑇𝑝 has the 𝐾 -Erlang

density function

 𝑓𝑝(𝑇𝑝) =
𝜆𝐾𝑇𝑝

𝐾−1𝑒−𝜆𝑇𝑝

 (𝐾 − 1)!

This distribution is considered because the mixture of the

Erlang distributions is widely used in modeling the

transmission delay in telecommunications networks. Since the

NB-IoT disconnection occurring at 𝜏0
∗ is a random observer of

the 𝑇𝑝 period, from (1), the residual life of 𝑇𝑝 is 𝑇𝑝
∗ = 𝜏𝑝

∗ − 𝜏0
∗,

which has the density function

𝑟𝑝(𝑇𝑝
∗) = (

𝜆

 𝐾
) [1 − ∫ 𝑓𝑝(𝑡)𝑑𝑡

𝑇𝑝
∗

𝑡=0

]

= (
𝜆

 𝐾
) [∑

𝜆𝑘𝑇𝑝
∗𝑘𝑒−𝜆𝑇𝑝

 𝑘!

𝐾−1

𝑘=0

] (5)

Let 𝑁 be the random variable representing that there are

𝑁 − 1 status changes in the 𝑇𝑝
∗ period. Then Pr[𝑁 = 𝑛] is the

Fig. 12. The web page for Map.

(a) (b)

Fig. 13. NCTU dog tracking application: (a) a tracker with the GPS receiver;

(b) the tracked dog with ID 0.

 t
 *

 t2

time

 Tp

 Tn

…………
 t1

 tn

 Tp

t1 t
*

T
*

 τ1 τ2 τn-1 τ0 τ0 τ
*

 τp τ
*
 τn τ

*

Fig. 14. Timing diagram for modeling sensor outage detection.

IEEE INTERNET OF THINGS JOURNAL 8

probability that 𝑛 − 1 status changes are not received by the

network before NB-IoT disconnection is detected. From (5) and

for 𝑁 > 1,we have

Pr[𝑁 = 𝑛]

= ∫ ∫ ∫ 𝑓(𝑡𝑛) 𝑓𝑛(𝑇𝑛) 𝑟𝑝(𝑇𝑝
∗)

𝑇𝑛+𝑡𝑛

𝑇𝑝
∗=𝑇𝑛

∞

𝑇𝑛=0

∞

𝑡𝑛=0

 𝑑𝑇𝑝
∗𝑑𝑇𝑛𝑑𝑡𝑛

= (
𝜆

 𝐾
) ×

∫ 𝑓(𝑡𝑛) ∫ 𝑓𝑛(𝑇𝑛) ∫ [∑
𝜆𝑘𝑇𝑝

∗𝑘𝑒
−𝜆𝑇𝑝

∗

 𝑘!

𝐾−1
𝑘=0]

𝑇𝑛+𝑡𝑛
𝑇𝑝
∗=𝑇𝑛

∞

𝑇𝑛=0

∞

𝑡𝑛=0
 𝑑𝑇𝑝

∗𝑑𝑇𝑛𝑑𝑡𝑛

= (
1

 𝐾
) ∫ 𝑓(𝑡𝑛)∫ 𝑓𝑛(𝑇𝑛)

∞

𝑇𝑛=0

∞

𝑡𝑛=0

 × {∑ [1 − ∑
(𝜆𝑇𝑝

∗)
𝑗
𝑒−𝜆𝑇𝑝

∗

 𝑗!

𝑘

𝑗=0

]|

𝑇𝑝
∗=𝑇𝑛

𝑇𝑝
∗=𝑇𝑛+𝑡𝑛𝐾−1

𝑘=0

}𝑑𝑇𝑛𝑑𝑡𝑛

= (
1

 𝐾
) ∫ 𝑓(𝑡𝑛)∫ 𝑓𝑛(𝑇𝑛)

∞

𝑇𝑛=0

∞

𝑡𝑛=0

 × (
1

 𝐾
) {∑{∑

(𝜆𝑇𝑛)
𝑗𝑒−𝜆𝑇𝑛

 𝑗!

𝑘

𝑗=0

𝐾−1

𝑘=0

 −∑
[𝜆(𝑇𝑛 + 𝑡𝑛)]

𝑗𝑒−𝜆(𝑇𝑛+𝑡𝑛)

 𝑗!

𝑘

𝑗=0

}}𝑑𝑇𝑛𝑑𝑡𝑛

= (
1

 𝐾
) ∫ 𝑓𝑛(𝑇𝑛) {∑ [∑

(𝜆𝑇𝑛)
𝑗𝑒−𝜆𝑇𝑛

 𝑗!

𝑘

𝑗=0

]

𝐾−1

𝑘=0

}
∞

𝑇𝑛=0

 𝑑𝑇𝑛

 − (
1

 𝐾
) ∫ 𝑓(𝑡𝑛)∫ 𝑓𝑛(𝑇𝑛)

∞

𝑇𝑛=0

∞

𝑡𝑛=0

 × {∑{∑(
𝑘

𝑗
) 𝑇𝑛

𝑗𝑡𝑛
𝑘−𝑗 [

𝜆𝑗𝑒−𝜆(𝑇𝑛+𝑡𝑛)

 𝑗!
]

𝑘

𝑗=0

 }

𝐾−1

𝑘=0

}𝑑𝑇𝑛𝑑𝑡𝑛

=
𝐴 − 𝐵

 𝐾
 (6)

where

𝐴 = ∫ 𝑓𝑛(𝑇𝑛) {∑ [∑
(𝜆𝑇𝑛)

𝑗𝑒−𝜆𝑇𝑛

 𝑗!

𝑘

𝑗=0

]

𝐾−1

𝑘=0

}
∞

𝑇𝑛=0

 𝑑𝑇𝑛

= ∑∑{∫ 𝑓𝑛(𝑇𝑛)
∞

𝑇𝑛=0

[
(𝜆𝑇𝑛)

𝑗𝑒−𝜆𝑇𝑛

 𝑗!
] 𝑑𝑇𝑛}

𝑘

𝑗=0

𝐾−1

𝑘=0

 (7)

From the frequency-domain general derivative of Laplace

transform, we have

∫ 𝑇𝑛
𝑗𝑓𝑛(𝑇𝑛)𝑒

−s𝑇𝑛𝑑𝑇𝑛

∞

𝑇𝑛=0

= (−1)𝑗 [
𝑓𝑛
∗(𝑗)(𝑠)

d𝑠𝑗
] (8)

From (8), (7) is simplified as

𝐴 = ∑∑[
(−𝜆)𝑗

 𝑗!
] [
𝑓𝑛
∗(𝑗)(𝑠)

d𝑠𝑗
]|

𝑠=𝜆

𝑘

𝑗=0

𝐾−1

𝑘=0

 (9)

In (6), B is rewritten as

𝐵 = ∫ 𝑓(𝑡𝑛)∫ 𝑓𝑛(𝑇𝑛)
∞

𝑇𝑛=0

∞

𝑡𝑛=0

 × {∑∑(
𝑘

𝑗
) 𝑇𝑛

𝑗𝑡𝑛
𝑘−𝑗 [

𝜆𝑗𝑒−𝜆(𝑇𝑛+𝑡𝑛)

 𝑗!
]

𝑘

𝑗=0

𝐾−1

𝑘=0

}𝑑𝑇𝑛𝑑𝑡𝑛

= ∫ 𝑓(𝑡𝑛)∫ 𝑓𝑛(𝑇𝑛)
∞

𝑇𝑛=0

∞

𝑡𝑛=0

 × {∑∑(
𝑘

𝑗
) (
𝜆𝑗

 𝑗!
)

𝑘

𝑗=0

[𝑇𝑛
𝑗𝑒−𝜆𝑇𝑛][𝑡𝑛

𝑘−𝑗𝑒−𝜆𝑡𝑛]

𝐾−1

𝑘=0

}𝑑𝑇𝑛𝑑𝑡𝑛

= ∑∑(
𝑘

𝑗
) (
𝜆𝑗

 𝑗!
)

𝑘

𝑗=0

[∫ 𝑓𝑛(𝑇𝑛)
∞

𝑇𝑛=0

𝑇𝑛
𝑗𝑒−𝜆𝑇𝑛𝑑𝑇𝑛]

𝐾−1

𝑘=0

 × [∫ 𝑓(𝑡𝑛)
∞

𝑡𝑛=0

𝑡𝑛
𝑘−𝑗𝑒−𝜆𝑡𝑛 𝑑𝑡𝑛]

= ∑∑(
𝑘

𝑗
)

𝑘

𝑗=0

[
(−𝜆)𝑗𝜆𝑘−𝑗

 𝑗!
] {[
𝑓𝑛
∗(𝑗)(𝑠)

d𝑠𝑗
] [
𝑓
∗(𝑘−𝑗)(𝑠)

d𝑠𝑘−𝑗
]}|

𝑠=𝜆

𝐾−1

𝑘=0

 (10)

Substitute (9) and (10) into (6) to yield

Pr[𝑁 = 𝑛] = ∑∑[
(−𝜆)𝑗

𝐾 (𝑗!)
]

𝑘

𝑗=0

𝐾−1

𝑘=0

× {[
𝑓𝑛
∗(𝑗)(𝑠)

d𝑠𝑗
] {1 − (

𝑘

𝑗
) 𝜆𝑘−𝑗 [

𝑓
∗(𝑘−𝑗)(𝑠)

d𝑠𝑘−𝑗
]}}|

𝑠=𝜆

(11)

For N=1, from (5)

Pr[𝑁 = 1] = 1 − Pr[𝑁 > 2]

= 1 −∫ ∫ 𝑟1(𝑡1
∗) 𝑟𝑝(𝑇𝑝

∗)
∞

𝑇𝑝
∗=𝑡1

∗

∞

𝑡1
∗=0

 𝑑𝑇𝑝
∗𝑑𝑡1

∗

= 1 − ∫ 𝑟1(𝑡1
∗)∫ [∑

𝜆𝑘𝑇𝑝
∗𝑘𝑒−𝜆𝑇𝑝

∗

 𝑘!

𝐾−1

𝑘=0

]
∞

𝑇𝑝
∗=𝑡1

∗

∞

𝑡1
∗=0

 𝑑𝑇𝑝
∗𝑑𝑡1

∗

= 1 − ∫ 𝑟1(𝑡1
∗) [∑∑

(𝜆𝑡1
∗)𝑗𝑒−𝜆𝑡1

∗

 𝑗!

𝑘

𝑗=0

𝐾−1

𝑘=0

]
∞

𝑡1
∗=0

 𝑑𝑡1
∗ (12)

Similar to the derivation for (7)-(9), (12) is re-written as

 Pr[𝑁 = 1] = 1 − ∑∑[
(−𝜆)𝑗

 𝑗!
] [
𝑟1
∗(𝑗)(𝑠)

d𝑠𝑗
]|

𝑠=𝜆

𝑘

𝑗=0

𝐾−1

𝑘=0

 (13)

For 𝐾 = 1, (12) is simplified as

Pr[𝑁 = 𝑛] = 𝑓𝑛
∗(𝜆)[1 − 𝑓∗(𝜆)] for 𝑁 > 1 (14)

and (13) is re-written as

Pr[𝑁 = 1] = 1 − 𝑟1
∗(𝑠) = 1 −

1 − 𝑓∗(𝜆)

 E[𝑡1]𝜆
 (15)

Substitute (4) into (14) to yield

Pr[𝑁 = 𝑛] =
[1 − 𝑓∗(𝜆)]2[𝑓∗(𝜆)]𝑛−2

 E[𝑡1]𝜆
 for 𝑁 > 1 (16)

If 𝑡𝑖 has the Gamma distribution with the expected value

E[𝑡𝑖] = 𝛼/β, we have

𝑓(𝑡𝑖) =
β𝛼𝑡𝑖

𝛼−1𝑒−β𝑡𝑖

 Γ(𝛼)
 (17)

where 𝛼 is the shape parameter and 1/β is the scale

parameter. The Gamma distribution is a general form of the

Erlang distribution, and is widely used in telecommunications

network modeling [19], [20]. The Laplace transform of (17) is

IEEE INTERNET OF THINGS JOURNAL 9

𝑓∗(𝑠) =
β𝛼

(s + β)𝛼
 (18)

Substitute (18) into (16) and (15) to yield

Pr[𝑁 = 𝑛] = {
(
β

 𝛼𝜆
) [1 − (

β

𝜆+β
)
𝛼

]
2

(
β

𝜆+β
)
𝛼(𝑛−2)

 for 𝑁 > 1

1 − (
β

 𝛼𝜆
) [1 − (

β

𝜆+β
)
𝛼

] for 𝑁 = 1

(19)

We validate the boundary conditions of (19) as follows. For

𝑁 = 1, as 𝜆 approaches ∞, Pr[𝑁 = 1] should approach 1. We

have

lim
𝜆→∞

Pr[𝑁 = 1] = lim
𝜆→∞

1 − (
β

 𝛼𝜆
) [1 − (

β

𝜆 + β
)
𝛼

] = 1 − 0 × 1

= 1

For 𝑛 > 1, as 𝜆 approaches ∞, Pr[𝑁 = 𝑛] should approach

0. From (19), we have

lim
𝜆→∞

Pr[𝑁 = 𝑛] = lim
𝜆→∞

(
β

 𝛼𝜆
) [1 − (

β

𝜆 + β
)
𝛼

]

2

(
β

𝜆 + β
)
𝛼(𝑛−2)

= 0 × (1 − 1) × 1 = 0

As 𝜆 approaches 0, Pr[𝑁 = 1] should approach 0. In (19),

the limit of (
β

 𝛼𝜆
) [1 − (

β

𝜆+β
)
𝛼

] has the
0

 0
 form. By using the

L'Hôpital's rule

lim
𝜆→0

(
β

 𝛼𝜆
) [1 − (

β

𝜆 + β
)
𝛼

] = lim
𝜆→0

(
β

 𝛼
)

{

{
𝑑 [1 − (

β
𝜆 + β

)
𝛼

]

𝑑𝜆
}

[
𝑑(𝜆)
𝑑𝜆

]

}

= lim
𝜆→0

(
β

 𝛼
)

[

 (
𝛼
β
) (

β
𝜆 + β

)
𝛼+1

1
]

= 1 (20)

Substitute (20) into (19) for N=1, we have

lim
𝜆→0

Pr[𝑁 = 1] = lim
𝜆→0

1 − (
β

 𝛼𝜆
) [1 − (

β

𝜆 + β
)
𝛼

] = 1 − 1 = 0

Fig. 15 plots the histogram of 𝑡𝑖 (in percentage of

occurrences) for the visitor parking lot of the administration

building at NCTU. Most visitors spend roughly 1-4 hours in

this building for business. The histogram has the mean E[𝑡𝑖] =

3.1874 hours and the variance V[𝑡𝑖] = 16.6857 hour
2
=

1.64237E[𝑡𝑖]
2
 We approximate the histogram by the Gamma

distribution with the shape parameter 𝛼 =0.60886 and the scale

parameter β = 0.19102. Fig. 15 shows that the Gamma

distribution nicely fits the histogram.

The analytic model (i.e., Equation (19)) is used to validate an

event-driven simulation we developed in Appendix A. The

analytic model and the simulation experiments are compared

with various parameter setups. For all cases we considered, the

discrepancies are less than 0.4%.

Then we use the simulation experiments and the measured

data in Fig. 15 to investigate the relationship between 𝑇𝑝 and

Pr[𝑁 = 𝑛]. To save the energy consumption of the NB-IoT

devices, a long 𝑇𝑝 should be selected. On the other hand, a short

𝑇𝑝 should be selected to ensure a small amount of lost sensor

data (i.e., a large Pr[𝑁 = 1] and a small E[𝑁]). It is clear that

𝑇𝑝, Pr[𝑁 = 1] and E[𝑁] are conflicting output measures.

Fig. 16 illustrates the probabilities Pr[𝑁 = 𝑛] against

E[𝑇𝑝]/E[𝑡𝑖] (for 1 ≤ 𝑁 ≤ 4). The figure shows that the

probability Pr[𝑁 = 1] (i.e., the parking status is up to date

when connection failure is detected) decreases as E[𝑇𝑝]

increases. The curve indicates that by decreasing E[𝑇𝑝] from

E[𝑡𝑖] to 0.25E[𝑡𝑖] , the Pr[𝑁 = 1] performance is improved by

48.77% for Exponential E[𝑇𝑝], and 32.35% for fixed E[𝑇𝑝]. On

the other hand, by decreasing E[𝑇𝑝] from 0.25E[𝑡𝑖] to 0.0625

E[𝑡𝑖] , the Pr[𝑁 = 1] performance is improved by 15% for

Exponential E[𝑇𝑝], and 8.5% for fixed E[𝑇𝑝]. In other words,

for E[𝑇𝑝] ≥ 0.25E[𝑡𝑖] , Pr[𝑁 = 1] performance is effectively

improved as E[𝑇𝑝] decreases. For E[𝑇𝑝] ≤ 0.25E[𝑡𝑖], Pr[𝑁 =

1] performance is insignificantly improved as E[𝑇𝑝] decreases.

Therefore, it is appropriate to select a small E[𝑇𝑝] ≥ 0.25E[𝑡𝑖].

For 𝑛 ≥ 2 , Pr[𝑁 = 𝑛] increases and then decreases as

E[𝑇𝑝] increases. As 𝑁 increases, the peaks of the curves shift to

the right. The Pr[𝑁 = 1] values for fixed E[𝑇𝑝] is larger than

that for Exponential E[𝑇𝑝]. For 𝑛 ≥ 2 , When E[𝑇𝑝] is small

Fig. 15. Histogram of 𝑡𝑖 and the Gamma density function.

Fig. 16. Pr[𝑁 = 𝑛] against E[𝑇𝑝]/E[𝑡𝑖].

IEEE INTERNET OF THINGS JOURNAL 10

Pr[𝑁 = 𝑛] for fixed E[𝑇𝑝] is smaller than that for Exponential

E[𝑇𝑝]. When E[𝑇𝑝] is large Pr[𝑁 = 𝑛] for fixed E[𝑇𝑝] is larger

than that for Exponential E[𝑇𝑝].

Fig. 17 shows the effect of the variance V[𝑡𝑖] on the expected

number E[𝑁 − 1] of missed status changes before the

connection failure is detected. The figure indicates that the

E[𝑁 − 1] performance for fixed E[𝑇𝑝] is better than that for

Exponential E[𝑇𝑝], which is not affected by the variance V[𝑡𝑖].

Fig. 18 illustrates the probability Pr[𝑁 = 1] against the

variance V[𝑡𝑖] and E[𝑇𝑝]/E[𝑡𝑖]. This figure shows a non-trivial

result where Pr[𝑁 = 1] is an increasing function of V[𝑡𝑖]. That

is, for a larger V[𝑡𝑖], it is more likely that no status change

information is lost when the network failure is detected. This

phenomenon is explained as follows. When V[𝑡𝑖] is large, more

long 𝑡𝑖 intervals are observed, and it is more likely that 𝑇𝑝
∗ < 𝑡1

∗,

and therefore a large E[𝑁 = 1] is expected.

VI. RELATED WORK

This section compares NB-IoTtalk with the related studies.

The work [21] proposed an architecture-driven approach based

on model-driven architecture (MDA) to enable automatic

generation of a Wireless Sensor and Actuator Network

middleware tailored to the requirements elucidated by the

system architects. Based on a design flow, [22] takes the

application software, the hardware specification

(communication protocols and sensor network platforms) and

the mapping between them as inputs to construct a system

model in Behavior Interaction Priority (BIP) framework. Both

MDA and BIP provide good paradigms for developing IoT

applications, and the details can be found in [21] and [22].

Similar to these two approaches, IoTtalk automatically

generates the network applications. The major differences are

that IoTtalk develops the whole system centered at the device

feature and the device model concepts, and a network

application is automatically generated to interact between the

IDFs and the ODFs. Furthermore, a user friendly GUI is

included in IoTtalk that allows the user to modify the network

applications without any or with little programming effort.

Although NB-IoTtalk enjoys the IoTtalk features mentioned

above, it is not incremental improvement of IoTtalk.

NB-IoTtalk makes the following major contributions not found

in IoTtalk [10][11]:

 Automatic generation of Device Application: In IoTtalk, the

creation of DAs for IoT devices are the responsibility of

users. In this paper, the DAs for various NB-IoT

applications (Fig. 2 (5)) are automatically created.

 Automatic parsing the message payloads for IDFs and

ODFs: Different NB-IoT applications send different types

of IoT data to the network. Since the IoT data are stored in

the payloads of NB-IoT messages in the JSON format (Fig.

4), we can automatically parse the DF values and create the

corresponding icons in the IoTtalk GUI (Fig. 3).

 Extending IoTtalk with the tag concept that allows the DF

attributes to associate with the tags: Without tags, the

previous approaches need to manually create various DFs

with the same attribute. With the ID tag, we can handle

multiple devices by one DA, and represent all of them by

one icon in the IoTtalk GUI. We can also group the NB-IoT

devices into subgroups (Fig. 5). With the GeoData tag,

multiple NB-IoT devices can be easily shown in the map

output device (Fig. 12) without extra programming effort.

 Proposing service platform interworking by developing a

DA to bridge other platforms to IoTtalk: We described how

NB-IoT platform interworks with IoTtalk (Fig. 2).

 Original modeling of event-triggered NB-IoT message

delivery: Most TTL mechanisms [23] were investigated to

balance data accuracy against the transmission cost between

the servers and the clients. In Apache and Squid, a TTL

interval is defined for data entries stored in the mobile

devices. The TTL for a data entry is determined based on

whether the data entry is modified due to either a mobile

query or a server update, which involves the data access

times and the TTL expiration time. On the other hand, in

event-triggered NB-IoT message delivery, we need to detect

if a message does not arrive at the server; i.e., we also need

to consider the sensor failure (unavailable) times.

Therefore, the analysis in this paper is more complicated

than that in [23].

VII. CONCLUSIONS

Many outdoor IoT applications involve large numbers of

homogeneous NB-IoT devices, and it is tedious to specify and

accommodate these devices in application development. This

Fig. 17. E[𝑁 − 1] against E[𝑇𝑝]/E[𝑡𝑖] and V[𝑡𝑖].

Fig. 18. Pr[𝑁 = 1] against V[𝑡𝑖] and E[𝑇𝑝]/E[𝑡𝑖].

IEEE INTERNET OF THINGS JOURNAL 11

paper proposed the NB-IoTtalk service platform for fast

development of NB-IoT applications, which utilizes a tag

mechanism to resolve this issue. In our approach, every sensor

and every actuator in an IoT application can be associated with

a tag. We define five types of tags: Identity (ID), Geographic

Data (GeoData), Time (T), Battery (B), and Privacy (P). With

this tag mechanism, NB-IoTtalk provides an

easy-to-manipulate GUI to accommodate a large number of

NB-IoT devices in an application with the ID tag, and illustrate

them to a visual map using the GeoData tag. Our approach

automatically creates and parses the device profile used to

interpret the payload of an NB-IoT message.

We then used a smart parking lot application as an example

to show event-triggered reporting in NB-IoT. We conducted the

on/off status measurements of the parking sensors in a NCTU

parking lot, and developed an analytic model and simulation

experiments to investigate the performance of event-triggered

reporting in terms of the time-to-live (TTL) report frequency

and the outage detection accuracy for the parking lot

application. Our study provides the guidelines to set the TTL

interval for NB-IoT event-triggered reporting. Specifically, for

the NCTU parking lot, we suggest to selected fixed TTL

interval 𝑇𝑝 = 0.25E[𝑡𝑖], where 𝑡𝑖 is the interval between two

status changes of the parking sensor.

In the future, we will extend multiple tags to associate with a

DF, and in particular, employ the Privacy tag to fit privacy

regulations of various countries.

APPENDIX A. THE SIMULATION MODEL

We have developed an event-driven simulation to compute

Pr[𝑁 = 𝑛]. Several variables are defined. The event-driven

simulation is repeated with 10
6
 replications. Let I be the number

of replications performed so far. The simulation uses a Boolean

variable f as a flag to indicate if the network is disconnected. An

array N[I] is used to store the number of lost status changes

before the failure is detected in the I-th replication. An event e

consists of two fields: the timestamp e.t when the event occurs

and the event type e.type. Three event types are defined:

 Disconnection: the network is disconnected

 StatusChange: the status of the parking sensor changes

 TTLreport: the parking sensor issues a TTL report

The flowchart of the simulation is illustrated in Fig. A.1 with

the following steps:

Step A.1. The variables I and N[] are initialized to 0.

Step A.2. The first Disconnection event e1 is created where

its timestamp e1.t drawn from the Exponential distribution is

generated by an Exponential random number generator

RNG1(). Therefore, this network disconnection interval is a

random observer of the StatusChange and the TTLreport

time intervals. The variable f is set to false, and the number I of

replications is incremented by one. This event is inserted in the

event list.

Step A.3. The first StatusChange event e2 is created. The

timestamp e2.t is drawn from the Gamma distribution (with the

shape parameter 𝛼 and the scale parameter 1/β) produced by a

Gamma random number generator RNG2(). This event is

inserted in the event list.

Step A.4. The first TTLreport event e3 is created where its

timestamp is a fixed value or is drawn from the Erlang-K

distribution generated by a random number generator RNG3().

The event is inserted in the event list.

Step A.5. The event e with the smallest timestamp is

removed from the event list.

Step A.6. The event type e.type is checked. If e.type is

Disconnection, Step A.7 is executed. If e.type is

StatusChange, Step A.8 is executed. If e.type is TTLreport,

Step A.11 is executed.

Step A.7 (e.type is Disconnection). Flag f is set to true. The

simulation flow goes to Step A.5.

Step A.8 (e.type is StatusChange). The next StatusChange

event e2 is created where its timestamp is set to e2.t=e.t+

RNG2(). The event e2 is inserted in the event list.

Step A.9. Flag f is checked. If f is true (i.e., the network does

not receive this status change), the simulation flow goes to Step

A.10. Otherwise, the flow goes to Step A.5.

Step A.10. N[I] is incremented by one. The simulation flow

goes to Step A.5.

Step A.11 (e.type is TTLreport). Flag f is checked. If f is

true (i.e., the network detects that it does not receive the TTL

report), the simulation flow goes to Step A.13. Otherwise, the

flow goes to Step A.12.

Step A.12. The next TTLreport event e3 is created where its

timestamp is set to e3.t=e.t+ RNG3(). The event e3 is inserted

in the event list. The simulation flow goes to Step A.5.

Step A.13. If 𝐼 >10
6
, then report N[I] at Step A.14 and the

simulation terminates. Otherwise, the flow goes to Step A.2 for

the next replicated run.

REFERENCES

[1] H. W. Kao, Y. H. Ju and M. H. Tsai, “Two-Stage Radio Access for

Group-Based Machine Type Communication in LTE-A”, IEEE

TTLreport

(1) I � 0; N[] � {0};

(9) If f is true ?

Start

(2) Generate the e1 event;

e1.type = Disconnection;

e1.t = RNG1();

I++; f � false;

Insert it into the event list;

(5) Remove the first event

e from the event list;

(10) N[I]++;

(13) I > 10
6

End

 (14) Output N[I];

(6) e.type = ?

(12) Generate the e3 event;

e3.type = TTLreport;

e3.t = RNG3() + e.t;

Insert it into the event list;

(8) Generate the e2 event;

e2.type = StatusChange;

e2.t = RNG2() + e.t;

Insert it into the event list;

(7) f = true;

(11) If f is true ?

Disconnection

No

Yes

StatusChange

Yes No

No Yes

(3) Generate the e2 event;

e2.type = StatusChange;

e2.t = RNG2();

Insert it into the event list;

(4) Generate the e3 event;

e3.type = TTLreport;

e3.t = RNG3();

Insert it into the event list;

Fig. A.1. Simulation flowchart.

IEEE INTERNET OF THINGS JOURNAL 12

International Conference on Communications (ICC), pp. 3825-3830,

London, June 2015.

[2] X. Li et al., “Smart Community: an Internet of Things Application”, IEEE

Communications Magazine, vol. 49, no. 11, pp. 68-75, 2011.

[3] Y. Y. Shih, A. C. Pang, and P. C. Hsiu, “A Storage-free Data Parasitizing
Scheme for Wireless Body Area Networks”, IFIP Networking,

Trondheim, Norway, 2014.

[4] Y.-B. Lin, and A.-C. Pang, “Wireless and Mobile All-IP Networks”, John
Wiley and Sons, 2005.

[5] J. Xie and I. Howitt, “Multi-Domain WLAN Load Balancing in

WLAN/WPAN Interference Environments”, IEEE Transactions on
Wireless Communications, vol. 8, no. 9, pp. 4884-4894, September 2009.

[6] N. Sornin et al., “LoRaWAN™ Specification”, LoRA Alliance, 2015.

[7] 3GPP TR 45.820, “Cellular system support for ultra-low complexity and
low throughput Internet of Things (CIoT)”, v13.1.0, December 2015.

[8] 3GPP TR 23.720, “Study on architecture enhancements for Cellular

Internet of Things”, v13.0.0, March 2016.
[9] P. Andres-Maldonado et al., “NarrowBand IoT Data Transmission

Procedures for Massive Machine Type Communications”, IEEE

Network, pp. 8-15, November/December, 2017.
[10] Y.-B. Lin et al., “EasyConnect: A Management System for IoT Devices

and Its Applications for Interactive Design and Art”, IEEE Internet of

Things Journal, vol. 2, no. 6, pp. 551-561, December 2015.
[11] Y.-B. Lin et al., “IoTtalk: A Management Platform for Reconfigurable

Sensor Devices”, IEEE Internet of Things Journal, vol. 4, no.5, pp.

1552-1562, October, 2017.
[12] Y.-W. Lin et al., “IoTtalk-RC: Sensors As Universal Remote Control for

Aftermarket Home Appliances”, IEEE Internet of Things Journal, vol. 4,
no. 4, pp. 1104-1112, Aug. 2017

[13] Y.-W. Lin et al., “ArduTalk: An Arduino Network Application

Development Platform based on IoTtalk”, IEEE System Journal, accepted
and to appear, 2018.

[14] S.-Y. Wang et al., “Performance of LoRa-based IoT Applications on

Campus”, IEEE 86th Vehicular Technology Conference (VTC-Fall),
Toronto, pp. 1-6, September 2017.

[15] Y.-C. Sung et al., “Voice/Video Quality Measurement for LTE Services”,

IEEE Wireless Communications, accepted and to appear, 2018.
[16] 3GPP TR 36.888, “Study on provision of low-cost Machine-Type

Communications (MTC) User Equipments (UEs) based on LTE”, v12.0.0,

June 2013.
[17] Y.-B. Lin et al., “Location-based IoT applications on campus: The

IoTtalk approach”, Pervasive and Mobile Computing, pp. 660-673, vol.

40, June 2017.
[18] S.-R. Yang, S.-Y. Yan, and H.-N. Hung, “Modeling UMTS Power Saving

with Bursty Packet Data Traffic”, IEEE Transactions on Mobile

Computing, vol. 6, no. 12, pp. 1398-1409, December 2007.
[19] S.-R. Yang, P. Lin, and P.-T. Huang, “Modeling Power Saving for GAN

and UMTS Interworking”, IEEE Transactions on Wireless

Communications, vol. 7, no. 12, pp. 5326-5335, December 2008.
[20] S.-R. Yang and W.-T. Chen, “SIP Multicast-based Mobile

Quality-of-service Support over Heterogeneous IP Multimedia

Subsystems”, IEEE Transactions on Mobile Computing, vol. 7, no. 11, pp.
1297-1310, November 2008.

[21] T. C. Rodrigues et al., “Architecture-driven development approach

WASN for applications”, IEEE 13th International Conference on
Embedded and Ubiquitous Computing, pp. 68-75, October 2015.

[22] A. Lekidis et al., “DesignFlow for the Rapid Development of Distributed

Sensor Network Applications”, Verimag Research Report, Tech. Rep.
TR-2014-13, 2014.

[23] Y. Fang et al., “TTL Prediction Schemes and the Effects of Inter-Update

Time Distribution on Wireless Data Access”, ACM Wireless Networks,
vol. 10, no. 5, pp. 607-619, September, 2004.

Yi-Bing Lin (M’96–SM’96–F’03) is the

Vice Chancellor of the University System

of Taiwan, and the Lifetime Chair Professor

of the National Chiao Tung University

(NCTU). During 2014–2016, he was

Deputy Minister of the Ministry of Science

and Technology, Taiwan. He is also an

Adjunct Research Fellow of the Institute of

Information Science, and Center for Information Technology

Innovation, Academia Sinica, and a member of board of

directors, Chunghwa Telecom. He is the Author of the books

Wireless and Mobile Network Architecture (Wiley, 2001),

Wireless and Mobile All-IP Networks (Wiley, 2005), and

Charging for Mobile All-IP Telecommunications (Wiley, 2008).

He received the TWAS Prize in Engineering Sciences in 2011

(The World Academy of Sciences). He serves as the Chair of

IEEE Taipei Section. He is an AAAS Fellow, an ACM Fellow,

and an IET Fellow.

Hung-Chun Tseng received the B.S. degree

in Department of Applied Science from

National Hsinchu University of Education,

Taiwan, in 2007, and the M.S. degrees in

Department of Electrophysics from National

Chiao Tung University (NCTU), Taiwan, in

2011. He is currently pursuing the Ph.D.

degree at the Department of Computer

Science, NCTU.

Yun-Wei Lin received the B.S. degree in

computer and information science from

Aletheia University, Taipei, Taiwan, in

2003, and the M.S. and Ph.D. degrees in

computer science and information

engi-neering from National Chung Cheng

University, Chiayi, Taiwan, in 2005 and

2011, respectively.

He is currently an Assistant Research

Fellow with National Chiao Tung University, Hsinchu, Taiwan.

His current research interests include mobile ad hoc networks,

wireless sensor networks, vehicular ad hoc networks, and

IoT/M2M communications.

Ling-Jyh Chen received the BEd degree in information and

computer education from National Taiwan

Normal University in 1998, and the MS

and PhD degrees in computer science from

the University of California, Los Angeles,

in 2002 and 2005, respectively. He joined

the Institute of Information Science of

Academia Sinica as an assistant research

fellow in 2005, and became an associate

research fellow in 2011. His research

interests are networked sensing systems, network

measurements, and mobile data management. He is a senior

member of the IEEE.

